In Memoriam

This paper is dedicated to the memory of our friend and colleague John L. Norton, who
wrote the original versions of the computer programs that we use to calculate the single-particle
energies and resulting shell and pairing corrections for a deformed folded-Yukawa single-particle
potential.
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Abstract: We tabulate the atomic mass excesses and nuclear ground-state deformations of 8979 nuclei
ranging from 0 to A = 339. The calculations are based on the finite-range droplet macroscopic
model and the folded-Yukawa single-particle microscopic model. Relative to our 1981 mass table
the current results are obtained with an improved macroscopic model, an improved pairing model
with a new form for the effective-interaction pairing gap, and minimization of the ground-state
energy with respect to additional shape degrees of freedom. The values of only nine constants
are determined directly from a least-squares adjustment to the ground-state masses of 1654 nu-
clei ranging from 60O to 263106 and to 28 fission-barrier heights. The error of the mass model is
0.669 MeV for the entire region of nuclei considered, but is only 0.448 MeV for the region N > 65.

1 Introduction

We presented our first macroscopic-microscopic global nuclear mass calculation 14 years ago 2.
This calculation, which was based on a finite-range liquid-drop model for the macroscopic energy
and a folded-Yukawa single-particle potential for the microscopic corrections, was somewhat
limited in scope. With only 4023 nuclei included, it did not extend to the proton or neutron
drip lines or to the region of superheavy nuclei. Also, the quantities tabulated were limited to
ground-state masses, ()2 and (4 moments, and microscopic corrections.

Our next publication of calculated nuclear masses occurred seven years ago®?. In these
calculations new pairing models had been incorporated and two different macroscopic models
were investigated, namely the finite-range liquid-drop model (FRLDM)?3 and the finite-range
droplet model (FRDM)“. These abbreviations are also used to designate the full macroscopic-
microscopic nuclear structure models based on the respective macroscopic models. The former is
the macroscopic model used in the 1981 12 calculations and the latter is an improved version ® of
the droplet model 5—8. Because there were several unresolved issues in the 1988 calculations 34
these tables should be regarded as interim progress reports.

We have now resolved these issues, which were related to the pairing calculations?, to the
effect of higher-multipole distortions on the ground-state mass'?, and to some details of the
shell-correction and zero-point-energy calculations ''. The resolution of these issues has resulted
in the present mass table. We first briefly review some important results obtained in the original
1981 calculation and enumerate the additional features of our new calculations.

Subsequent comparisons of predictions of our original 1981 model 1? with nuclear masses
measured after the calculations were published showed that the model would reliably predict
masses of nuclei that were not included in the determination of model constants®>''. With a
properly defined model error?, the error in new regions of nuclei is about the same as in the
region where the constants were adjusted. In the most recent investigations'!? of the 1981
mass calculation in new regions of nuclei, the error for 351 new nuclei was only 6% larger than
the error in the region where the model constants were adjusted. Furthermore, the error did not
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increase with distance from g stability.

Also, many other nuclear-structure properties were successfully predicted by the model for
nuclei far from stability 13716, A special result of the 1981 mass calculation was the interpretation
of certain spectroscopic results in terms of an intrinsic octupole deformation of nuclei in their
ground state 17719,

Here we present results of our new calculations of nuclear ground-state masses and defor-
mations. Relative to the 1981 calculations we use an improved macroscopic-microscopic model,
include additional shape degrees of freedom, extend the calculations to new regions of nuclei,
and calculate a large number of additional nuclear ground-state properties. These additional
properties will be published in a forthcoming article devoted to nuclear astrophysics 2°.

Specifically, we have improved the model in the following areas:

e Our preferred macroscopic model is now the finite-range droplet model, which contains
several essential improvements° over the original droplet model 8.

e The pairing calculations have been improved. Our pairing model is now the Lipkin-Nogami
model 21723, We also use an improved functional form of the effective-interaction pairing
gap and an optimized pairing constant %24,

e An eighth-order Strutinsky shell correction is used.

e The € zero-point energy is still added to the calculated potential energy to obtain the
ground-state mass, but no y zero-point energy is added, since the method of calculation
is not sufficiently accurate .

e We minimize the ground-state energy with respect to e3 and eg shape degrees of freedom,
in addition to the e; and €4 shape degrees of freedom considered previously.

e FEach ground-state shell-plus-pairing correction is based on single-particle levels calculated
for the constants appropriate to the nucleus studied. Earlier, a single set of single-particle
levels was used for an extended region of nuclei in conjunction with an interpolation scheme
to improve accuracy.

e The calculation has been extended from 4023 nuclei to 8979 nuclei, which now includes
nuclei between the proton and neutron drip lines and superheavy nuclei up to A = 339.

In the macroscopic-microscopic approach it is possible to calculate a large number of nuclear
structure properties in addition to nuclear ground-state masses. These include the following:

Even-multipole ground-state deformations:

Quadrupole e deformation €9
Hexadecapole e deformation €4
Hexacontatetrapole e deformation €6
Related quadrupole § deformation Bo
Related hexadecapole 8 deformation B4
Related hexacontatetrapole 8 deformation B

Beta-decay properties:

Q value of the 8 decay oF
B-decay half-life T3
[-delayed one-neutron emission probability Py
B-delayed two-neutron emission probability Py

[-delayed three-neutron emission probability Psy
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Lipkin-Nogami pairing quantities:
Neutron pairing gap
Proton pairing gap
Neutron number-fluctuation constant
Proton number-fluctuation constant

Odd-particle spins:
Projection of the odd-neutron angular momentum along the symmetry axis
Projection of the odd-proton angular momentum along the symmetry axis

Alpha-decay properties:
Q value of the o decay
a-decay half-life

Octupole properties:
Octupole € deformation
Related octupole 8 deformation
Decrease in mass due to octupole deformation

FRDM mass-related quantities:
Spherical macroscopic energy
Shell correction
Pairing correction
Microscopic correction
Calculated mass excess
Experimental mass excess
Experimental uncertainty
Discrepancy
Calculated binding energy

FRLDM mass-related quantities:
Finite-range liquid-drop model microscopic correction

Finite-range liquid-drop model mass excess

Neutron and proton separation energies:
One-neutron separation energy
Two-neutron separation energy
One-proton separation energy
Two-proton separation energy

€3
B3
ABs

Esph

mac
Eshen
Epair
Emic
My
M, exp
Oexp

AM
Eping

EFL

mic

FL
M,

As mentioned above, we present here the calculated ground-state masses and deformations.

Some of the remaining quantities will be presented in a forthcoming publication

20

In the next section we specify the macroscopic-microscopic finite-range droplet model in some
detail. We discuss in particular the constants of the model, paying special attention to how to
count the number of constants of a model. We present a summary of all constants in the model,
including both those constants that have been determined from a least-squares adjustment to
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ground-state masses and fission-barrier heights and those that have been determined from other
considerations. After our model has been specified, we discuss how it has been applied to the
current mass calculation.

2 Models

In the macroscopic-microscopic method the total potential energy, which is calculated as a
function of shape, proton number Z, and neutron number N, is the sum of a macroscopic term
and a microscopic term representing the shell-plus-pairing correction. Thus, the total nuclear
potential energy can be written as

Epot(Z, N,shape) = Enac(Z, N, shape) + Esyp(Z, N,shape) (1)

We study here two alternative models for Epac, given by Egs. (40) and (62) below. The shell-
plus-pairing correction is given by Egs. (75) and (76) below.

It is practical to define an additional energy, the microscopic correction Fj., which is dif-
ferent from the shell-plus-pairing correction Fs.,. For a specific deformation €,, the latter is
determined solely from the single-particle level spectrum at this deformation by use of Strutin-
sky’s shell-correction method 226 and a pairing model. In contrast, the microscopic correction
is given by

Emic(ea) = Es—i—p(ea) + Emac(ea) - Emac(esphore) (2)

This definition has the desirable consequence that the potential energy Fpo of a nucleus at a
certain deformation, for example the ground-state deformation eg, is simply

Epot(egs) = Emic(egs) + Emac(esphero) (3)

However, the reader should note that the term microscopic correction is sometimes used instead
for shell-plus-pairing correction. When results are presented it is usually F;. that is tabulated,
because it represents all additional effects over and above the spherical macroscopic energy.
In practical calculations it is Fsi, that is calculated. To obtain the total energy a deformed
macroscopic energy term is then added to Esp.

There exist several different models for both the macroscopic and microscopic terms. Most of
the initial works following the advent of Strutinsky’s shell correction method used the liquid-drop
model?™?® as the macroscopic model.

The preferred model in the current calculations has its origin in a 1981 nuclear mass mode
which utilized the folded-Yukawa single-particle potential developed in 19722%3%, The macro-
scopic model used in the 1981 calculation was a finite-range liquid-drop model, which contained
a modified surface-energy term to account for the finite range of the nuclear force. The mod-
ified surface-energy term was given by the Yukawa-plus-exponential finite-range model®'. The
macroscopic part in this formulation does not describe such features as nuclear compressibility
and corresponding variations in the proton and neutron radii.

The droplet model =8, an extension of the liquid-drop model ?"2® that includes higher-
order terms in A=Y/% and (N — Z)/A, does describe such features. However, in its original
formulation the droplet model was very inaccurate for nuclei far from stability and also failed
catastrophically 3! to reproduce fission barriers of medium-mass nuclei. These deficiencies led
Myers to suggest that the surface-energy terms of the droplet model also be generalized to
account for the finite range of the nuclear force. Thus, the Yukawa-plus-exponential model for
the surface tension was incorporated into the droplet model. During this work it also became
apparent that the description of nuclear compressibility was unsatisfactory, since the squeezing
of the central density of light nuclei was overpredicted. The deficiency was serious because it
starts to become important already at about A = 120 and becomes even more pronounced for

1,2
154
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lighter nuclei. To account for compressibility effects for light nuclei and for other higher-order
effects an empirical exponential term was added .

The additions of the finite-range surface-energy effects and exponential term to the droplet
model® resulted in dramatic improvements in its predictive properties, as summarized in the
discussion of Table A in Ref. 4. Mass calculations based on both the FRLDM 3 and the FRDM 4
were presented in the 1988 review of mass models in Atomic Data and Nuclear Data Tables.
These calculations also used an improved pairing model relative to that used in the 1981 work.
In the 1988 results the error in the FRDM was 8% lower than that in the FRLDM.

However, there were two major unresolved issues in the 1988 calculations. First, there existed
some deficiencies in the pairing model and the values of the constants that were used. Second,
€3 and €5 shape degrees of freedom were still not included, so deviations between calculated
and measured masses due to the omission of these shape degrees of freedom were still present.
Extensive investigations of pairing models and their constants have now been completed and
resulted in an improved formulation of the pairing model®. We have now also minimized the
potential energy with respect to €3 and e¢g shape degrees of freedom. An overview of the results
has been given in a paper on Coulomb redistribution effects!°. The FRDM, which includes
Coulomb redistribution effects, is now our preferred nuclear mass model.

Although the FRDM is now our preferred model, we also present results for the FRLDM
for comparative purposes and for use in studies that assume constant nuclear density. We
therefore specify below both models. Because several of the model constants are determined by
least-squares-minimization of the model error, we start by defining model error.

2.1 Model error and adjustment procedure

In many studies the model error has been defined as simply the root-mean-square (rms) devia-
tion, which as usual is given by

2

1 ¢ ) 7
rms = ; Z(Mexp - th)2 (4)
=1

Here Mtih is the calculated mass for a particular value of the proton number Z and neutron
number N, and ngp is the corresponding measured quantity. There are n such measurements
for different NV and Z. The choice (4) is a reasonable definition when all the errors o associated

exp
with the measurements are small compared to the model error. However, for large o, the above

ex
definition is unsatisfactory, since both the theoretical and experimental errors contrif)ute to the
rms deviation. The definition (4) will therefore always overestimate the intrinsic model error.
When the experimental errors are large, it is necessary to use an approach that “decouples”
the theoretical and experimental errors from one another. This can be accomplished by observing
that the calculated masses are distributed around the true masses with a standard deviation oyy,.
There exist powerful statistical methods for determining the intrinsic model error o¢,. The model
error obtained in this way contains no contributions from the experimental uncertainties o?,,.
To introduce such an error concept a new set of equations for determining model parameters and
error were derived ® by use of statistical arguments and the maximum-likelihood (ML) method.
Here we generalize from the original assumption ® e, € N(0,04,) that the theoretical error term
eih is normally distributed with zero mean deviation from the true mass to eih € N(utn, oth)
to allow for an error with a mean pg, that is different from zero and a standard deviation oy

around this mean '2. This leads to the generalized equations

= [ngp - (Mtlh + :uth*)] 0 tih

>

P2 *
= Ol + Oom? Opy

=0, v=12,...,m (5)
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[Melxp (Mtlh + Mth*)]2 - ( exp + Oth *)
=0 6
; ( Oexp + Uth ) ( )
Z (ML, — (th + pen™)] _ 0 (7)

i=1 ( Oexp +Uth )

where p, are the unknown parameters of the model. The notation o2 means that by solving
Egs. (6) and (7) we obtain the estimate oy,%" of the true oy2. Equation (5) is equivalent to
minimizing S with respect to p,, where

2
S — Z eXp Mth + :uth )] (8)

exp +Jh

Thus, we are led to two additional equations relative to the usual least-squares equations
that arise when model parameters are estimated by adjustments to experimental data under the
assumption of a perfect theory with oy, = 0 and py, = 0. For the FRLDM the least-squares
equations (5) are linear, whereas for the FRDM they are non-linear.

When the model contains a term agA° that is strictly constant, Eq. (7) is identical to the
member in Eq. (5) that corresponds to the derivative with respect to this constant. Thus, one
should in this case put p,* = 0 and solve only the remaining m+1 equations. One may therefore
in this case characterize the error of the model in the region where the parameters were adjusted
solely by the quantity oy,. In other cases one should solve the full set of equations. If ™ is
significantly different from zero the theory needs modification. Even if u, = 0 in the original
data region, it is entirely possible (although undesirable) that one obtains a mean error pug,*
that is substantially different from zero when one analyzes model results for new data points to
which the parameters were not adjusted. In this case the most complete characterization of the
theoretical error requires both its mean puy;, and its standard deviation oy, around this mean.

To allow for a single error measure that is similar to an rms deviation between the data and
model we later also calculate the square root of the second central moment of the error term,
Oth:u—0, in our studies of model behavior in new regions of nuclei. This quantity is obtained by
setting p,* = 0 when solving Eq. (6). In contrast to the rms measure, it has the advantage
that it has no contributions from the experimental errors.

Equations (5)—(7) constitute a system of m + 2 equations that are to be solved together. It
is instructive to rewrite Eqs. (6) and (7) as

* 1 = 7 % * i 2
e (TR g
=1
. 1 n K [0 M 10
Hth 2?21 wlk# ; (1 [( exp th)} ( )
where 1
wi* = (11)
(0l >t o2 )k
ko =2 (12)
k,=1 (13)

The unknowns j,* and o,2” can easily be determined from Eqgs. (9) and (10) by an iterative
procedure whose convergence is extremely rapid, requiring only about four iterations. An in-
terpretation, not a proof, of Eq. (9) is that the experimental error is “subtracted out” from the
difference between the experimental and calculated masses.
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A common misconception is that one has to “throw away” data points that have errors that
are equal to or larger than the error of the model whose parameters are determined. When a
proper statistical approach, such as the one above, is used, this is no longer necessary.

We will see below that the discrepancy between our mass calculations and measured masses
systematically increases as the size of the nuclear system decreases. It is therefore of interest
to consider that the mass-model error is a function of mass number A. A simple function to

investigate is
c

Oth — E (14)

where ¢ and « are two parameters to be determined. Whereas under the assumption of a
constant model error one determines this single error constant from Eq. (9), we find that the
ML method for the error assumption in Eq. (14), with two unknowns, and assuming pu, = 0,

yields the equations
* 2
i i \2 i 2 C
n (Moxp - th) - [aexp + (F) ‘|
Z 2 =0 (15)

* 2
=1 i 2 C a*
l () |
* 2
(M, — M) [aéxf + (=) ]

2 & \? 2
[Uéxp + (F) ‘| Aioc*-l—l
)

These equations are considerably more complicated to solve than Eq. (9). We solve them by
minimizing the sum of the squares of the left members of Egs. (15) and (16).

=0 (16)

-

@
Il
,_.

2.2 Shape parameterizations

The original parameterization of the folded-Yukawa single-particle model was the three-quadratic-
surface parameterization 2>32. It was designed to allow great flexibility in describing shapes late
in the fission process. However, it is less suitable for describing ground-state shapes.

To allow a better description of ground-state shapes and to allow close comparison with re-
sults of Nilsson modified-oscillator calculations, we incorporated the Nilsson perturbed-spheroid
parameterization, or € parameterization, into the folded-Yukawa single-particle computer code
in 197330:33:34,

In our work here we use the € parameterization for all calculations related to ground-state
properties. In our adjustment of macroscopic constants we also include 28 outer saddle-point
heights of fission barriers. The shapes of these saddle points were obtained in a three-parameter
calculation in the three-quadratic-surface parameterization in 1973 33.

2.2.1 Perturbed-spheroid parameterization

The € parameterization was originally used by Nilsson 3° in the modified-oscillator single-particle
potential. It was introduced to limit the dimensions of the matrices from which the single-
particle energies and wave functions are obtained by diagonalization. This requirement leads to
somewhat complex expressions for the nuclear shape. Here we employ its extension to higher-
multipole distortions. For completeness we define it with axially asymmetric shapes36—3% in-

cluded, although this symmetry-breaking shape degree of freedom has not yet been implemented

in the folded-Yukawa single-particle model. Note that a factor % %’r is missing in front of the

Vi(7y) function in Eq. (3) of Ref. 38.
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As the first step in defining the € parameterization a “stretched” representation is introduced.
The stretched coordinates &, 7, and ( are defined by

r 2 2 1/2
& = {_m;;)o _1—§62(:os(’y+§7r>}} T
- (B e (-5}
n = nol 3€2COS vy 37r Y

- 1/2
¢ = {w 1—§EQCOSV:|} z (17)

h

where hwg is the oscillator energy, €s the ellipsoidal deformation parameter, and v the non-
axiality angle. It is then convenient to define a “stretched” radius vector p; by

pe= (€ +1 + ()2 (18)
a stretched polar angle 8; by
1/2
1- 562 Cos 7y
u=-cosfy === cosf 19
! Pt 1 2 1 1/2 . .92 ( )
1-— 362 cosy(3cos“ 0 —1) + 3 €9 sin -y sin” 6 cos 2¢
and a stretched azimuthal angle ¢; by
1 1 1/2
{1 + —e COS"}/:| cos 2¢ + (—) €9 sin 7y
v = CcoS2¢y = 21 = 3 3 (20)
(&2 + n2)1/2 1 1\ 1/2
1+§EQCOS’Y+ (g) €2 sin~y cos 2¢

In the folded-Yukawa model the single-particle potential is very different from that in the
Nilsson modified-oscillator model. However, the definition of the € parameterization will be most
clear if we follow the steps in the Nilsson model. The implementation in the folded-Yukawa model
will then be simple. The Nilsson modified-oscillator potential is defined by

1
V= §hw0pt2 {1 + 2€1 Py (cos b6y)

2 I V2, —2
— geg cos yPy(cos by) + 562 sin -~y [Y2 (O, ) + Yy 2 (6, gbt)}

gﬂ'
+ 2e3P3(cos 0y) + 2€4Vy(cos Oy, cos 2¢ ) + 2€5P5(cos 0) + 2€6 Ps(cos Gt)}
— ko |20 - §4 p(l 2 <12 >)] (21)

where [; is the angular-momentum operator in the stretched coordinate system, § is the spin
operator 3°, and

[4m _ _
‘/Zl(u, ?}) = a40P4 + ? [CL42(Y42 + Y4 2) + CL44(Y44 + Y4 4)} (22)

Here the hexadecapole potential Vj(u,v) is made dependent on « in such a way that axial
symmetry is maintained when v = 0, 60°, —120°, and —60°, for mass-symmetric shapes and for
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€6 = 0. This is accomplished by choosing the coefficients a4; so that they have the transformation
properties of a hexadecapole tensor. However, this is achieved only for mass-symmetric shapes
and for e5 = 0. The ¢ parameterization has not been generalized to a more general case. Thus 3

1
ajsy = 6(50082’}’4-1)
1 .
age = —-—v30sin2vy
12
= L s (23)
aqq4 = 12 sm- 7y

It is customary to now assume that the shape of the nuclear surface is equal to the shape of
an equipotential surface given by Eq. (21). By neglecting the I - § and l:2 terms and solving for
pt and then using Egs. (17)—(20) to derive an expression for r in the non-stretched laboratory
system we obtain

00 = {0 - B 3] o B

X 1—562008’7—562 cos” v + €2 COS’Y—FgEQCOSQ’V U

- (%) €9 siny (1 — geg cos ’y) (1-— uz)U]

9 1 1\ 1/2
X ll — §€2 cos 75(3u2 -1)+ <§) ez siny(1 — u2)v

—1/2
+ 261 P, (u) + 263P3(’u,) + 264V4(u, 1)) + 265P5(u) + 266P6(u)] (24)

In the Nilsson model the starting point is to define the potential. After the potential has
been generated the shape of the nuclear surface is deduced by the above argument. In the
folded-Yukawa model the starting point is different. There, the equation for the nuclear surface,
given by Eq. (24) in the case of the e parameterization, is specified in the initial step. Once
the shape of the surface is known, the single-particle potential may be generated as described
in later sections.

The quantity wp/ (fzo is determined by requiring that the volume remain constant with de-
formation, which gives

0 ’ 1 {[1 2 cos ( + 2 )} [1 2 cos ( 2 )] {1 2 cos }}_1/2
— = — — —€ - — —€ — =T — —€
o An 32\ T3 32773 32

™ 27 ) 2 . 8 1/2 2 -2
X / do, doy sin6; |1 — 3¢ cos YPa(u) + e siny = (Y5 +Y,7)
0 0

-3/2
+ 261 Py (u) + 2e3P3(u) + 2e4Vy(u, v) + 2€5P5(u) + 2€6P6(’LL)‘| (25)

The above equation is derived by determining the volume inside the nuclear surface given by
Eq. (24), with the integral [ d3r inside the surface evaluated in terms of the “non-stretched”
coordinates 6 and ¢. After a variable substitution one arrives at the expression in Eq. (25).
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The Legendre polynomials P; occurring in the definitions of the e parameterization are defined
by

d !
The first six Legendre polynomials are
Po(u) = 1
Pi(u) = u
Lo,
Py(u) = 5(3u -1)
L3
Py(u) = 5(5u — 3u)
1
Py(u) = g(35u4 — 30u? + 3)
1
Ps(u) = g(63u5 — 70u® + 15u)
1
Ps(u) = 1—6(231u6 — 315u* + 105u® — 5) (27)

The associated Legendre functions P/™ are defined by
(1 _ u2)m/2 qHm
20 dul+m

The spherical harmonics are then determined from the relations

P (u) = W=D, 1=0,1,2,...,00; m=0,1,2,...,1 (28)

—m)171/2 '
v (0.0) = (- [ B O R os o)z 0 (20)
Yzm*(ev ¢) = (_)m}/l—m(e’ ¢) (30)

which yield for the functions used here

Y7 (0,9) = \/g sin2 fe2i®

Y, 40,¢) = \/gsiHQHe_Qw
Yi0,9) = \/% sin? getio
Y4_4(9,¢) = \/gsin‘lee_‘w

4 .
YZ(0,¢) = 1227? sin? 0(7 cos? 0 — 1)e*?
Y, 2(0,¢) = 45 sin® 0(7 cos? § — 1)e~ ¢ (31)
R 1287

The sums
SYay = Y7 (0,0)+Y; %(0,0)
SYu = Y(0,0)+Y,0,9)
SYr = Y{(0,0)+Y2(6,9) (32)
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are required in the expression for the single-particle potential and in the corresponding equation
for the nuclear surface. When the arguments of the spherical harmonics are the stretched angles
f; and ¢y we obtain

15 15
SYo = 1/§s1n29tcos2¢t: g(l—uz)v

B 315 . 4 /315 N2 (0, 2
SYy = 93, S0 0; cos 4oy = 12871'(1 u®)*(2v" — 1)

_ B 29, B e -
SYi = 35, Sin 0:(7 cos® 6y — 1) cos 2¢, = 3277(1 u?)(Tu® — 1)v (33)

2.2.2 Three-quadratic-surface parameterization

In the three-quadratic-surface parameterization the shape of the nuclear surface is defined in
terms of three smoothly joined portions of quadratic surfaces of revolution. They are completely
specified by 32

2
ay
a?-—E-h)?, h-a<z<zn
612
2 2 (122 2
pT =9 a2 —ﬁ(z—lz) , 2<z2<lt+e (34)
2
a32
az? — —=5(z—13)% , 21 <2<z
632

Here the left-hand surface is denoted by the subscript 1, the right-hand one by 2, and the middle
one by 3. Each surface is specified by the position I; of its center, its transverse semiaxis a;, and
its semi-symmetry axis ¢;. At the left and right intersections of the middle surface with the end
surfaces the value of z is z; and zo, respectively.

There are nine numbers required to specify the expressions in Eq. (34) but three numbers
are eliminated by the conditions of constancy of the volume and continuous first derivatives at
z1 and z9. The introduction of an auxiliary unit of distance u through

u= E (a12 + af)]é (35)

permits a natural definition of two sets of shape coordinates. We define three mass-symmetric
coordinates o; and three mass-asymmetric coordinates «; by

lo —1
o (lo — )
u
a32
o9y = —=
2 632
1 a12 a22
%= 2(—+—
1(ll+lg)
a = 2w
2 2
a —Q
0y = (a1 - 2°)
u
2 2
a a
az = —5— — (36)
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The coordinate o is not varied freely but is instead determined by the requirement that the
center of mass be at the origin.

2.2.3 Conversion to  parameters

A common parameterization, which we do not use here, is the 8 parameterization. However,
since we want to present some of our results in terms of 8 shape parameters, we introduce the
parameterization and a scheme to express shapes generated in other parameterizations in terms
of B deformation parameters. In the 8 parameterization the radius vector r is defined by

0o l
r(0,6) = Ro(1+ Y Y BimY™) (37)

=1 m=—1

where Ry is deformation dependent so as to conserve the volume inside the nuclear surface. When
only axially symmetric shapes are considered the notation F; is normally used for ;9. Since the
spherical harmonics Y} are orthogonal, one may determine the § parameters corresponding to
a specific shape in the € parameterization by use of

) e eg

/Blm =
[ 160750, 0)a0

(38)

where 7 is now the radius vector in the ¢ parameterization, given by Eq. (24). This conversion
equation is in fact valid for a radius vector (6, ¢) defined by any parameterization.

When the [ parameters corresponding to a specific shape in the e parameterization are
determined one should observe that higher-order 8 parameters may be non-zero even if higher-
order € parameters are identically zero. For this reason, and because (5 is not tabulated, the
nuclear ground-state shape is not completely specified by the 3 parameters in the Table, whereas
the shape is completely defined by the € parameters.

2.3 Finite-range droplet model

The finite-range droplet model, developed in 1984°, combines the finite-range effects of the
FRLDM 31:3940 with the higher-order terms in the droplet model. In addition, the finite-range
droplet model contains the new exponential term

—CAe e (39)

where C' and v specify the strength and range, respectively, of this contribution to the energy
and the quantity € is a dilatation variable given by Eq. (49) below. The exponential term leads
to an improved description of compressibility effects and is crucial to the substantially improved
results obtained in the finite-range droplet model relative to the original droplet model. The
necessity for this empirical exponential term, which is discussed extensively in Refs. 5 and 41,
is clearly demonstrated in Refs. 5 and 41 and by the results obtained in Sec. 4.2 below.

Most of our results here are based on the finite-range droplet model for the macroscopic
term. Relative to the formulation given in Ref. 5, which unfortunately has numerous misprints,
we use a new model for the average neutron and proton pairing gaps. The complete expression
for the contribution to the atomic mass excess from the FRDM macroscopic energy is obtained
after minimization with respect to variations in € and 0, where ¢ is the average bulk relative
neutron excess given by Eq. (47) below. One then obtains
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Epac(Z, N,shape) =

MuZ + M,N mass excesses of Z hydrogen atoms and N neutrons
o 1,
+ |—a1+Jé — §K€ A volume energy
9 J2 2 By
+ <a231 + 1652Fi> A%/3 surface energy
+ a3A'/3By curvature energy
+ apA° AV energy
Z2
+ ¢ mBg Coulomb energy
— 0 Z2AY3B, volume redistribution energy
74/3
— qm Coulomb exchange correction
BwB .
— 522 5 & surface redistribution energy
1
Z2
+ foz proton form-factor correction to the Coulomb energy
— a(N-2) charge-asymmetry energy
1/A , Z and N odd and equal .
+ W <|I| + { 0 otherwise ) Wigner energy
Ap+ A, — by » Zand N odd

B
el

Z odd and N even
+ average pairing energy
Z even and N odd

el
=}

o

Z and N even

ae 239 energy of bound electrons
(40)

where A = Z + N is the mass number and [ = (N — Z)/A is the relative neutron excess. This
expression differs from the corresponding one used in our earlier calculations® only in the form
of the average pairing energy appearing in the next-to-last term. One should note that after
minimization the exponential term [Eq. (39)] is present only implicitly in Eq. (40) through its
presence in Eq. (49) below. For the average neutron pairing gap AL, average proton pairing gap
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Zp, and average neutron-proton interaction energy 5np we now use %2442
A= - (41)
Ap = T?f/fs (42)
Onp = ﬁ (43)

The zero reference point for the pairing energy now corresponds to even-even nuclei rather than
to halfway between even-even and odd-odd nuclei.
The quantities c1, ¢, ¢4, and c¢5 are defined by

- 57’0
! <1+18) )
2 = 336\J " K)D
5 3 2/3
Cy = Z<%) C1
1 2
_ 44
cs 610°! (44)

In Eq. (40) we have kept only the first term in the expression for the proton form-factor
correction to the Coulomb energy, so that fy is given by

() =5 )

1
fo==35{®)"n

8

The bulk nuclear asymmetry ¢ is defined in terms of the neutron density p, and proton density
pp by

5= Pn — Pp (46)
Pbulk

and the average bulk nuclear asymmetry is given by

- 3¢ Z ByB 9J 1 B
=(r+ 2L 2 2vos 1+22 4
5 <+16QA2/3 B1>/<+4QA1/3B1> (47)

The relative deviation in the bulk of the density p from its nuclear matter value pg is defined
by
1p—po
€= —-—— 48
3 (48)

and the average relative deviation in the bulk of the density is given by
2

_ A AL/3 By =2 A
€ = (CC YA _2GQW+L(5 +C1A4/3B4> /K (49)
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The quantity B; is the relative generalized surface or nuclear energy in a model that accounts
for the effect of the finite range of the nuclear force. It is given by

A-2/3 v — 1|\ e”lr—rl/a
By / / ( ) dr d*r’! 50
~ 8n2ro2dt Ir — 1’| /a (50)
where the integration is over the specified sharp-surface deformed generating shape of volume
V. Since the volume of the generating shape is conserved during deformation we have

V= %”R(F (51)

where Ry is the radius of the spherical shape. The relative Coulomb energy Bj is given by

15 A~%/3 d3r d3r’ 1|r—r/| ;
By 1 LY et :
3 3272 7'0 //V |I' - I' [ < * 2 Qden ) ¢ (5 )

The quantities By and Bs are evaluated for Ry = rgAY/3. However, in the finite-range droplet
model the equilibrium value Rge, of the equivalent-sharp-surface radius corresponding to the
nuclear density is given by the expression

Rden = TOA1/3(1 + E) (53)

Thus, the actual value of the nuclear radius is determined by the balance between Coulomb,
compressibility, and surface-tension effects as expressed by Eq. (49). To calculate this balance it
is necessary to know the response of the surface-energy and Coulomb-energy terms By and Bg
to size changes. To account for this response we introduce the quantities By and By, which are
related to the derivatives of By and Bs. These derivatives are evaluated numerically and during
this evaluation the radius R of the generating shape is varied around the value roA/3.

The quantity By, which as mentioned above is related to the derivative of the relative gen-
eralized surface energy B, is defined by

By— o [% (:1:231)} (54)

T=x0

with
T0A1/3

x = B and xg = (55)

a

The quantity By is related to the derivative of the relative Coulomb energy B3 and is defined by

e[ (2)]

ToAl/ 3
and yg =
Gden Gden

with

Y= (57)
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For spherical shapes the quantities By, Bs, Bs, and B4 can be evaluated analytically. One
obtains

3 3 3
B = 1——+(1+x0)<2+——|——2>e—2x0
LE() i) i)
Bgo) = 1—(1+2$0—x02) e 2%0
1 21
Béo) = 1_%[1__5+_3_§<1+i+ 7 +L>e—2y0}
Yo 8yo  8yo® 4 2y0 2903
©) 3 .15 63 3<2 12 32 42 21> _2]
B = 1+5{ -y B i wl (58
4 vo?  2yo®  4wo® 4 \yo  w?  w®  w?  wod (58)

The expression Bsg for the relative Coulomb energy yields the energy for an arbitrarily shaped,
homogeneously charged, diffuse-surface nucleus to all orders in the diffuseness constant age,. The
constants in front of the integrals for By and Bj are chosen so that By and Bs are 1 for a sphere
in the limit in which the range constant a and the diffuseness constant aqe, are zero, in analogy
with the definition of the quantities By and B¢ in the standard liquid-drop and droplet models.
The quantities Bs and By, which are related to the derivatives of B; and Bs, respectively, were
introduced above to treat the response of the nucleus to a change in size, resulting from a finite
compressibility. The shape-dependent quantities Bs, By, By, By, and By, which are defined 7 in
the standard droplet model, are given by

A—2/3
= / dS surface energy
47Tr0
154-4/3 p _
B, = _1?371727‘04 /S W(r)dS neutron skin energy
225472 [ [~ 42
B, = %57737"06 /S {W(r)} as surface redistribution energy
A-1/3 1 1
By = p— /s (R_1 + R_2) ds curvature energy
I575A77/3 [ 42
B, = 21?7737’07 /V [W(r)} d3r  volume redistribution energy
(59)
where
W(r) = / L
v |r—r/|
— 3471
W = d?
471'7‘03 /{/ (I') "
W) =W(r)-W (60)

and R; and Ry are the principal radii of curvature.
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2.4 Values of FRDM macroscopic-model constants

The constants appearing in the expression for the finite-range droplet macroscopic model fall
into four categories. The first category, which represents fundamental constants, includes 2

My = 7.289034 MeV hydrogen-atom mass excess
M, = 8.071431 MeV neutron mass excess
e? = 14399764 MeV fm  electronic charge squared

One should note that for consistency we here use the same values for the fundamental constants
as in our 1981 mass calculation 2. Results of a more recent evaluation of the fundamental
constants appear in Refs. 43 and 44.

The second category, which represents constants that have been determined from consider-
ations other than nuclear masses, includes '™

aq = 1.433 x107° MeV electronic-binding constant
K = 240 MeV nuclear compressibility constant
Ty = 0.80 fm proton root-mean-square radius
rg = 1.16 fm nuclear-radius constant
a = 0.68 fm range of Yukawa-plus-exponential potential
Qden = 0.70 fm range of Yukawa function used to

generate nuclear charge distribution

The third category, representing those constants whose values were obtained from consider-
ation of odd-even mass differences 9>4%? and other mass-like quantities, are

Tmac = 4.80 MeV average pairing-gap constant
h = 6.6 MeV neutron-proton interaction constant
W = 30 MeV Wigner constant
L = 0 MeV density-symmetry constant
a3 = 0 MeV curvature-energy constant

It should be noted that the final calculated mass excess is strictly independent of the value used
for rmac. This constant affects only the division of the mass excess between a macroscopic part
and the remaining microscopic correction. We will therefore not include ry,. when we later
count the number of constants in our mass model. It is the pairing constant ry;c which enters
the microscopic model that affects the mass excess. It will be discussed below.

Since p, = 0 in our case, Egs. (6) and (8) can be solved with the experimental data set of
1654 masses with Z > 8 and N > 845 and 28 fission-barrier heights to determine the remaining
macroscopic constants and the error of our model. Because it is now clear that the measurements
of the masses of 3 734Na that are listed in the 1989 midstream evaluation of Audi®® are in error,
we have made four revisions. For 31:32Na we use early results of mass measurements at TOFI 4.
The final, slightly different values appear in Ref. 47. For 33Na we use results of new measurements
at GANIL 8. The data point for 3*Na is excluded.

To present all the macroscopic model constants together we list them here but discuss their
adjustment later. These constants are
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a; = 16.247 MeV  volume-energy constant

as = 22.92 MeV surface-energy constant

J = 32.73 MeV symmetry-energy constant

Q = 2921 MeV  effective surface-stiffness constant

ag = 0.0 MeV A® constant

ca = 0436 MeV charge-asymmetry constant

c = 60 MeV pre-exponential compressibility-term constant

v = 0831 exponential compressibility-term range constant

The pairing constant ry;. which enters the microscopic model is also determined in a least-
squares minimization with the above 1654 masses, although no barrier heights were included in
its determination. Once the value of r,;. had been determined the adjustment routines were run
again, this time with barriers included, to yield the final values of the constants listed above.
The value of ry;. will be given in the section on microscopic constants. The resulting error in
the FRDM is oy, = 0.669 MeV.

For completeness we also specify the mass-energy conversion factor used in the interim 1989
mass evaluation. In this evaluation the relation between atomic mass units and energy is given
by 45

1 u=931.5014 MeV (61)

Although a more recent value has been adopted *3*449 it is the above value, consistent with
the 1989 interim mass evaluation *°, that should be used if our calculated mass excesses in MeV
are converted to atomic mass units.

2.5 Finite-range liquid-drop model

In the present version of our model the contribution to the atomic mass excess from the FRLDM
macroscopic energy is given by
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EFL (Z,N,shape) =

mac

MuZ + M,N mass excesses of Z hydrogen atoms and N neutrons

. (1 - mvﬂ) A

s (1 - /4512) B, A%/3

volume energy

surface energy

agA° AV energy
Z2
+ clmBg, Coulomb energy
74/3
— qm Coulomb exchange correction
Z2
+ f (kfrp)j proton form-factor correction to the Coulomb energy
— aN-2) charge-asymmetry energy

+ W |+ /A, ZaHdNOdd and equal
0, otherwise

Wigner energy

Ap+ A, — by » Zand N odd
A, Z odd and N even
+ . average pairing energy
A, Z even and N odd
0, Z and N even
— aqZ?*3 energy of bound electrons

19

(62)

This expression differs from the corresponding one used in our earlier calculations 2 only in the
form of the average pairing energy appearing in the next-to-last term. For the average neutron
pairing gap A, average proton pairing gap A, and average neutron-proton interaction energy

Onp WE NOW use 9,24,42

~ TmacBs
An = N1/3
x TmacBs
Ap = 71/3
h
5np = BSA2/3

(63)
(64)

(65)

The zero reference point for the pairing energy now corresponds to even-even nuclei rather than

to halfway between even-even and odd-odd nuclei.
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In the above expressions the quantities ¢; and ¢4 are defined in terms of the electronic charge
e and the nuclear-radius constant ry by

o - 3e?
L= 57’0
5 3 2/3
Cq4 = Z<%> C1 (66)

The quantity f appearing in the proton form-factor correction to the Coulomb energy is given
by

1 rp 145 327 9 1527 4
Flherp) = =g~ 5 {48 2880 *F7®)” F 1300600 (FTe) (67)
where the Fermi wave number is 1
97TZ 1
The relative neutron excess I is
N-Z N-Z (69)

" N+z A
The relative surface energy Bg, which is the ratio of the surface area of the nucleus at the
actual shape to the surface area of the nucleus at the spherical shape, is given by

A 2/3
T drrg? /dS (70)

The quantity B; is the relative generalized surface or nuclear energy in a model that accounts
for the effect of the finite range of the nuclear force. It is given by

A-2/3 v —r/|\ e lr—rl/a
B d3r dPr’' 71
87‘(’27’0 a4// < )\r—r’]/a rar (71)
The relative Coulomb energy Bg is given by
15 A=5/3 d3r d3r' 1r—1'| ,
B — {4 ilr=rl wqwm} 9
3 3272 7'0 //V |I'_I' [ < +2 Qden )e (7 )

For spherical shapes the quantities By and B3 can be evaluated analytically. With

AL/3 AL/3
T = 1o and yo = o (73)
a Aden
one obtains
3 3 3
B = 1———~+u+x@(2+——+—7)e4“
zo? To X
5 15 21 3 9 7 7
By = 1———P———+~————<L+——+——+——)e4m} 74
3 Yo? 8yo  8yod 4 2y 2 23 (74)

The expression Bsg for the relative Coulomb energy yields the energy for an arbitrarily shaped,
homogeneously charged, diffuse-surface nucleus to all orders in the diffuseness constant age,. The
constants in front of the integrals for B; and Bs have been chosen so that By and Bs are 1 for
a sphere in the limit in which the range a and diffuseness age, are zero, in analogy with the
definition of the quantities By and B in the standard liquid-drop model.
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2.6 Values of FRLDM macroscopic-model constants

The constants appearing in the expression for the finite-range liquid-drop macroscopic model
fall into four categories. The first category, which represents fundamental constants, includes 2

My = 7.289034 MeV hydrogen-atom mass excess
M, = 8.071431 MeV neutron mass excess
e? = 1.4399764 MeV fm electronic charge squared

The second category, which represents constants that have been determined from consider-
ations other than nuclear masses, includes

aq = 1433 x107° MeV electronic-binding constant
Ty = 0.80 fm proton root-mean-square radius
rg = 1.16 fm nuclear-radius constant
a = 0.68 fm range of Yukawa-plus-exponential potential
Aden = 0.70 fm range of Yukawa function used to

generate nuclear charge distribution

The third category, representing those constants whose values were obtained from consider-
ation of odd-even mass differences 9>44? and other mass-like quantities, are

Tmac = 4.80 MeV average pairing-gap constant
h = 6.6 MeV neutron-proton interaction constant
W = 30 MeV Wigner constant

It should be noted that the final calculated mass excess is strictly independent of the value used
for rmac. This constant affects only the division of the mass excess between the macroscopic
part and the remaining microscopic correction. We therefore do not include 7, when we later
count the number of constants in our mass model. It is the pairing constant ry;c which enters
the microscopic model that affects the mass excess. It will be discussed below.

Since pg, = 0 in our case, Egs. (6) and (8) can be solved with the experimental data set of
1654 masses with Z > 8 and N > 8% and 28 fission-barrier heights to determine the remain-
ing macroscopic constants and the error of our model. To present all the macroscopic model
constants together we list them here but discuss their adjustment later. These constants are

ay = 16.00126 MeV volume-energy constant

Ky = 1.92240 MeV volume-asymmetry constant
as = 21.18466 MeV surface-energy constant

Ks = 2.345 MeV surface-asymmetry constant
ag = 2.615 MeV A9 constant

ca = 0.10289 MeV charge-asymmetry constant

The resulting error in the FRLDM is oy, = 0.779 MeV.

2.7 Microscopic model

The shell-plus-pairing correction Egy,(Z, N,shape) is the sum of the proton shell-plus-pairing
correction and the neutron shell-plus-pairing correction, namely

Esip(Z, N,shape) = Eff;t(Z, shape) + EJ{" (N, shape) (75)
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We give here the equations for the neutron shell-plus-pairing correction. Completely analogous
expressions hold for protons. We have

By (N, shape) = B (N, shape) + ELZ (IV, shape) (76)

Both terms are evaluated from a set of calculated single-particle levels. As before, the shell
correction is calculated by use of Strutinsky’s method 2526, Thus

meut (N, shape) = Zel EP" (N, shape) (77)

where e; are calculated single-particle energies and Fneut (N, shape) is the smooth single-particle
energy sum calculated in the Strutinsky method. The pairing correction is the difference between
the pairing correlation energy and the average pairing correlation energy, namely

Epsi (N, shape) = Ep (N, shape) — Ep (N, shape) (78)
where EPS™(N,shape) is given by Eq. (103) below and Eg.ec‘?t(N, shape) is given by Eq. (110)
below. For the pairing correction we now use the Lipkin-Nogami?!'=23 version of the BCS
method, which takes into account the lowest-order correction to the total energy of the system
associated with particle-number fluctuation.

The single-particle potential felt by a nucleon is given by

V=Vi+Vso + Vo (79)

The first term is the spin-independent nuclear part of the potential, which is calculated in terms
of the folded-Yukawa potential

VO e_‘r_r/‘/apot 3
V; = — d 80
1(r) AT apot3 /V v — /| /apot " (80)

where the integration is over the volume of the generating shape, whose volume is held fixed at
%ﬂ'RpOt3 as the shape is deformed. The potential radius R is given by

Rpot = Rdon + Aden - Bden/Rden (81)

with
Raen = 10AY3(1 + %) (82)

Values of the model constants Agen and Bgen will be given later. The potential depth V;, for
protons and potential depth V}, for neutrons are given by

Vo =Ve+ Vid (83)
Vo=Vi—Vid (84)

The average bulk nuclear asymmetry & appearing in Eqs. (83) and (84) and average relative
deviation € in the bulk of the density appearing in Eq. (82) are given by the droplet model and
thus depend on the values of the droplet-model constants. The FRDM macroscopic constants
are determined in a nonlinear least-squares adjustment, which requires about 1000 steps to find
the optimum constants. In principle, these constants should then be used in the determination
of the single-particle potential, the potential-energy surfaces should be recalculated with the new
constants, a new mass calculation should be performed, and a new set of macroscopic constants
should be determined, with this iteration repeated until convergence. Because the calculation of
potential-energy surfaces is extremely time-consuming, only one iteration has been performed.
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Furthermore, in determining the single-particle potential we have used the following early
forms %Y of the droplet model expressions for ¢ and é:

_ 3¢ 22 9J 1
_ 2as 2 72
€= —m‘i‘Lé +Clm /K (86)
The range
QApot = 0.8 fm (87)

of the Yukawa function in Eq. (80) has been determined from an adjustment of calculated single-
particle levels to experimental data in the rare-earth and actinide regions3?. It is kept constant
for nuclei throughout the periodic system.

The spin-orbit potential is given by the expression

I >20'-VV1 X p

‘/s.o. = _/\< 7

2MpycC (88)
where A is the spin-orbit interaction strength, m,,. is the nucleon mass, o represents the Pauli
spin matrices, and p is the nucleon momentum.

The spin-orbit strength has been determined from adjustments to experimental levels in
the rare-earth and actinide regions. It has been shown '43% that many nuclear properties
throughout the periodic system are well reproduced with A\ given by a function linear in A
through the values determined in these two regions. This gives

A
Ap = 6.0 (m) +28.0 =0.0254 + 28.0 = k, A+ 1, (89)
for protons and
A
An = 4.5 <%) +31.5 =0.01875A + 31.5 = k, A+ [, (90)

for neutrons.
Finally, the Coulomb potential for protons is given by

/
Ve(r) = epc/v |rdi7rr/| (91)
where the charge density p. is given by

R (92)

The number of basis functions used in our calculations is
Npas = 12 (93)

The overall curvature of the basis functions is chosen to yield
hwo = Cenr /A3 (94)

with
Cour = 41 MeV (95)
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2.8 Microscopic pairing models

Because of its basic simplicity, the BCS pairing model °=74 has been the pairing model of choice
in most previous nuclear-structure calculations 2295 However, a well-known deficiency of the
BCS model is that for large spacings between the single-particle levels at the Fermi surface, no
non-trivial solutions exist. In practical applications, these situations occur not only at magic
numbers, but also, for example, for deformed actinide nuclei at neutron numbers N = 142 and
152. By taking into account effects associated with particle-number fluctuations, the Lipkin-
Nogami approximation 2! =23 goes beyond the BCS approximation and avoids such collapses.

In solving the pairing equations for neutrons or protons in either the BCS or Lipkin-Nogami
model, we consider a constant pairing interaction G acting between No — N7 + 1 doubly degen-
erate single-particle levels, which are occupied by Ny nucleons. This interaction interval starts
at level Ny, located below the Fermi surface, and ends at level No, located above the Fermi
surface. With the definitions we use here, the levels are numbered consecutively starting with
number 1 for the level at the bottom of the well. Thus, for even particle numbers, the last
occupied levels in the neutron and proton wells are N/2 and Z/2, respectively.

The level pairs included in the pairing calculation are often chosen symmetrically around
the Fermi surface. However, for spherical nuclei it is more reasonable to require that degenerate
spherical states have equal occupation probability. This condition cannot generally be satisfied
simultaneously with a symmetric choice of levels in the interaction region. We therefore derive
the pairing equations below for the more general case of arbitrary Ni and N,.

In the Lipkin-Nogami pairing model2!=23 the pairing gap A, Fermi energy ), number-
fluctuation constant o, occupation probabilities v;2, and shifted single-particle energies €, are
determined from the 2(Ny — N7) 4+ 5 coupled nonlinear equations

No
Niogt =2 > vp” +2(Ny — 1) (96)
k=N1
No
2 1
R (97)
G k;\ﬁ (ex — A)2 + A?
1 € — A
2 k

vl == (1— ., k=Ni,Ni+1,...,N. 98
g 2[ (ex — N2+ A? b ? (98)
Ek:€k+(4/\2—G)’L)k2, k=Ni,Ni+1,...,No (99)

[/ Ny N» N» 1

. Sowdve | | DD wewk® | = D0 wetve
)\2 _ Z k=N1 k=N, . k=N1 (100)

No No
Z wlv? | — Z wetvgt
L k=N, k=N i
where

wl=1-v2, k=N,Ni+1,...,]N, (101)

The quasi-particle energies Ej, of the odd nucleon in an odd-A nucleus are now given by 22
9 911/2
By =[(ex =N+ A%+ 29, k=Ni,Ni+1,..., N (102)

In the Lipkin-Nogami model it is the sum A + A9 that is identified with odd-even mass differ-
ences 22. We denote this sum by Apx.



P. Mdller, J. R. Nixz, W. D. Myers, and W. J. Swiatecki/Nuclear Masses 25

The pairing-correlation energy plus quasi-particle energy in the Lipkin-Nogami model is
given by

Na A2 G Na No
Ep.c. = Z (2Uk2 — nk)ek — 6 — 5 (27%4 — nk) — 4)\2 Z uk2vk2 + Eieode\/mt (103)
k=N, k=N, k=N,

where ey, are the single-particle energies and ny, with values 2, 1, or 0, specify the sharp distri-
bution of particles in the absence of pairing. The quasi-particle energy E; for the odd particle
occupying level i is given by Eq. (102), and 444, n,, is unity if Ny is odd and zero if Ny is
even.

2.9 Effective-interaction pairing-gap models

In microscopic pairing calculations the pairing strength G for neutrons and protons can be
obtained from effective-interaction pairing gaps Ag, and Ag, given by ?

TmicBs

Ag, = NS (104)
TmicBs

Ag, = S (105)

The dependence of the pairing strength G on the corresponding effective-interaction pairing gap
A¢ is obtained from the microscopic equations by assuming a constant level density for the
average nucleus in the vicinity of the Fermi surface. This allows the sums in the equations to
be replaced by integrals. The average level density of doubly degenerate levels is taken to be

-1

=500\ (106)

where g is the smooth level density that is obtained in Strutinsky’s shell-correction method
and ) is the Fermi energy of the smoothed single-particle energy 2?:°6. Thus, we can make the
substitution

No Y2
S fle-N =7 [ fa)ds (107)
k=N1 1
where
_%Ntot + N —1
17

—%Ntot + No

0

y1 =

y2 = (108)

The gap equation (97) can now be evaluated for an average nucleus, with the result
1_ [v2 dx
P ey ag

_ %ﬁ {ln<\/y22 + A+ yg) — ln<\/y12 + A+ yl)} (109)
From this expression, the pairing strength G in the BCS model can be determined in any region
of the nuclear chart.

The same expression may also be used in the Lipkin-Nogami case, but some reinterpreta-
tions are necessary. It is now the energies €; occurring in Eq. (97) that are assumed to be

1
a
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equally spaced. These are not precisely the single-particle energies e, but are related to them
by Eq. (99). Thus, in order for € to be equally spaced, the single-particle energies e, must
be shifted downward by the amounts (4\y — G)vi2. Since the occupation probability vi? is
approximately unity far below the Fermi surface and zero far above, the corresponding single-
particle energy distribution is approximately uniform far above and far below the Fermi surface
but spread apart by the additional amount 4\ — G close to the Fermi surface. Although this
decrease in level density near the Fermi surface is accidental, it is in approximate accord with the
ground-state structure of real nuclei, since the increased stability associated with ground-state
configurations is due to low level densities near the Fermi surface 2456,

In the Lipkin-Nogami model, it is the quantity A + A9 that is associated with odd-even
mass differences, whereas in the BCS model it is A only that should be directly compared to
the experimental data. This leads to the expectation that there is a related difference between
AI(“;N and A(B;CS, the effective-interaction pairing gaps associated with the LN and BCS models,
respectively. Since we determine the constants of the model for A%;N directly from least-squares
minimization, it is not necessary to specify exactly such a relationship. However, the above
observation is of value as a rough rule of thumb, and to remind us to expect that the effective-
interaction pairing gaps in the BCS and LN models are of somewhat different magnitude.

The expression for the average pairing correlation energy plus quasi-particle energy Ep,c_
in the Lipkin-Nogami model is obtained in a similar manner as the expression for the pairing
matrix element GG. For the average pairing correlation energy plus quasi-particle energy in the
Lipkin-Nogami model we then obtain

~ 1~
Bpe. = 5P [(yz -G) (yz — 22+ Ac;2> + (y1 — G) (yl + /2 + AG2)]
1 ~ o~ _ Y2 — Y1 -~
+ — (G —4)2)pA {tan 1<—) — tan 1(—)] + Abodd Nio, 110
4( 2)PAq Ao Ac dd, Ny (110)

where the average pairing gap A is given by Eqs. (41) and (42) or Egs. (63) and (64).
The expression for Ao for an average nucleus is fairly lengthy. It is given by

Xy = % (2;_2) (111)

where

AG?p? 1 Y2 ()’
B = Y2 ) _ Y
o o (£5) e (£)

pAG Yo U1 _1< Yo ) _1< Y1 )
c = =5 A - t g2 ¢ L
32 [ “ <y22 + A% Y2 +A02) - tan Ag M\ A

One should note that the pairing strength G depends on the interval (N7, N2) over which
the pairing force is active. However, in our formulation we do not use GG as a primary constant.
Instead, we use the effective-interaction pairing gaps Ag, and Ag,, which are independent of
the choice of interaction interval (N1, N2). We choose the pairing interaction interval so that
at least all levels up to 5 MeV above the Fermi surface are included. It has sometimes been
asked whether particles scattered into the continuum by the pairing force would escape from

(112)
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the nucleus if the interaction interval includes unbound states. Of course not! The superfluid
state is the most bound configuration. The single-particle picture does not give the true nuclear
ground or excited states; it only serves as the set of basis functions for the pairing calculation.
Instead, the quasi-particle energies obtained in the pairing calculation represent a subset of all
possible excited states. If, in an excited nucleus, the quasi-particle energies are lower than the
particle separation energies no nucleons escape.

2.10 Shell correction

The Strutinsky shell-correction method 2525 requires two additional constants, the order p and
the range 5. The shell correction should be insensitive to these quantities within a certain
range of values. Their values can therefore be determined in principle by requiring the plateau
condition to be fulfilled. We have found that for heavy nuclei this condition is indeed fulfilled,
with the shell correction for nuclear ground-state shapes insensitive to the values of these two
constants. However, for light nuclei this is no longer the case. Here the shell correction may vary
by several MeV for a reasonable range of values of the range 5. Moreover, the shell correction
often does not exhibit any plateau. This probably indicates a gradual breakdown of the shell-
correction method as one approaches the very lightest region of nuclei, where the number of
single-particle levels is small.
In the present calculation we choose
p=2_8 (113)

for the order in the Strutinsky shell-correction method. The corresponding range ~g is given by
Ys = CshW(]BS (114)

with
Cs=1.0 (115)

and By given by Eq. (70). This choice lowers the error of the mass model to 0.669 MeV from
0.734 MeV obtained with the same range coefficient but no dependence on surface area in a
sixth-order correction.

The version of the Strutinsky method?>2¢ that we use here was originally proposed for
infinite single-particle wells. For finite wells the calculated shell correction diverges to +oo as
the number of basis functions approaches +oco. This difficulty is avoided by using only a limited
number of basis functions. It has been found that the calculated shell correction is approximately
independent of Ny, in the range 8 < Nypue < 1329,

One may expect the Strutinsky method to be less accurate for light nuclei than for heavy
nuclei because the smooth, average quantities calculated in the Strutinsky method are less
accurately determined from the few levels occurring in light nuclei. One could also ask if the
method is less accurate near the drip lines than close to § stability because the truncated single-
particle level spectrum that we use deviates more from a realistic single-particle spectrum near
the drip lines than near S-stable nuclei. Below, where we study the reliability of the model for
light nuclei and for nuclei far from 3 stability, we find that the model error does indeed grow as
the size of the nuclear system decreases. However, we find no obvious increase in the model error
for today’s known nuclei that are the furthest from § stability. The reliability of the Strutinsky
method for the folded-Yukawa single-particle potential is further discussed in the appendix of
Ref. 29.
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2.11 Zero-point energy

As a final step in the calculation of nuclear ground-state masses a zero-point energy is added
to the calculated potential energy at the ground-state shape. As mentioned above, we now
add only a zero-point energy for the fission, or €3, mode. In the harmonic approximation this
zero-point energy F,;, is given by

Ezp = %hwe (116)
where
we = (Ce/B)Y? (117)

Here C. is the potential-energy stiffness constant and B is the inertia associated with motion
in the €9 direction. Details of their calculation are given in Ref. 1. The angular frequency we is
related to that corresponding to irrotational flow by

we = KW' (118)

The constant K has been previously determined by requiring that for a spherical shape the
inertia B, equal the inertia determined from an adjustment to spontaneous-fission half-lives for
actinide nuclei 157,

2.12 Values of microscopic-model constants

The constants appearing in the expressions occurring in the microscopic shell-plus-pairing cal-
culation fall into four categories. The first category, which represents fundamental constants,
includes

Mpue = 938.90595 MeV nucleon mass
he = 197.32891 MeV fm Planck’s constant multiplied
by the speed of light and divided by 27
e? = 1.4399764 MeV fm electronic charge squared

The electronic charge squared has already been counted among the macroscopic constants.
The second category, which represents constants that have been determined from consider-

ations other than nuclear masses, includes 122

Cowr = 41 MeV basis curvature constant

Vs = 52.5 MeV symmetric potential-depth constant

Vo = 48.7 MeV asymmetric potential-depth constant
Agen = 0.82 fm potential radius correction constant
Bigen = 0.56 fm? potential radius curvature-correction constant
Qpot = 0.8 fm potential diffuseness constant

ky, = 0.025 proton spin-orbit A coefficient

I, = 28.0 proton spin-orbit constant

kn = 0.01875 neutron spin-orbit A coefficient

lh = 31.5 neutron spin-orbit constant

K = 0.33 zero-point-energy constant

The third category, representing those constants whose values were obtained from consider-
ation of mass-like quantities, are

Npas = 12 number of basis functions
p = 8 order of Strutinsky shell correction
Cs = 1.0 Strutinsky range coefficient
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The fourth category, representing those constants whose values were obtained from a least-
squares adjustment simultaneously with the macroscopic constants of the FRDM, includes only
one microscopic constant, namely

Tmic = 3.2 MeV LN effective-interaction pairing-gap constant

In addition, the following droplet-model constants, which have been determined in an earlier
study %", are used in the expressions for the average bulk nuclear asymmetry § and average
relative deviation € in the bulk density that are used to calculate V},, V5, and Rqen in Egs. (83),
(84), and (82), respectively:

as = 22.00 MeV surface-energy constant

J = 35 MeV  symmetry-energy constant

L = 99 MeV density-symmetry constant

Q = 25 MeV  effective surface-stiffness constant
K = 300 MeV compressibility constant

ro = 116 fm nuclear-radius constant

Insertion of these values and the value of €? on which ¢; depends in Egs. (85) and (86) leads to

(N — Z)/A+0.01122% ] A>/3

5 =
1+3.15/A1/3

(119)

0.147 _o  0.002482>
One could in principle carry through the iterations discussed above to obtain a consistent set of
droplet-model constants for the macroscopic part and for the single-particle potential, but the
required computational effort would be extensive. However, the value of ry is precisely the same
as that used in the macroscopic model.

€= (120)

3 Enumeration of constants

It is always of interest to have a clear picture of exactly what constants enter a model. Naturally,
anyone who sets out to verify a calculation by others or uses a model for new applications needs
a complete specification of the model, for which a full specification of the constants and their
values is an essential part. Also, when different models are compared it is highly valuable to
fully understand exactly what constants enter the models. Unfortunately, discussions of model
constants are often incomplete, misleading, and/or erroneous. For example, in Table A of
Ref. 58 the number of parameters of the mass model of Spanier and Johansson *? is listed as 12.
However, in the article® by Spanier and Johansson the authors themselves list in their Table A
30 parameters plus 5 magic numbers that are not calculated within the mass model and must
therefore be considered parameters, for a total of at least 35 parameters.

We specify here all the constants that enter our model, rather than just those that in the
final step are adjusted to experimental data by a least-squares procedure. We also include such
constants as the number of basis functions used and fundamental constants like the electronic
charge and Planck’s constant.
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Table 1: Constants in the FRDM. The third column gives the number of constants adjusted to nuclear
masses or mass-like quantities such as odd-even mass differences or fission-barrier heights. The fourth
column gives the number of constants determined from other considerations.

Constants Comment Mass-like  Other

My, M,, e Macroscopic fundamental constants 0 3

Gel, TOs Tp, Macroscopic constants from considerations 0 6

a, Qden, K other than mass-like data

L,as, W, h Macroscopic constants obtained 4 0
in prior adjustments to mass-like data

ai, az, J, @, ao, Macroscopic constants determined by 8 0

C, 7, ca current least-squares adjustments

he, Mmapue Microscopic fundamental constants 0 2

Vs, Vi, Aden, Bden, Ceur, Microscopic constants 0 11

kpa lpa kn, ln, Apot, K

Npas, p, Cs Microscopic constants determined 3 0
from considerations of mass-like quantities

Tmic Microscopic constant determined by 1 0
current least-squares adjustments

a1, az, J, K, L, Q Droplet-model constants that enter the single- 0 0
particle potential (see discussion in text)

Subtotals 16 22

Total 38

3.1 Constants in the FRDM

The discussion in the previous section allows us to enumerate the constants in the FRDM model
in Table 1. From this list we see that the macroscopic-microscopic method requires relatively
few constants. One feature of the model gives rise to a small complication when counting the
number of constants. Droplet-model constants occur also in the determination of the single-
particle potential. However, a different set of constants is used here because, as discussed above,
one does not know what the optimum values are until the calculation has been completed. In
principle, the calculation should be repeated with the new droplet-model constants defining the
single-particle potential until convergence is obtained. In Table 1 we have counted the number
of constants as if this procedure had been carried out.

However, since the droplet-model constants used in the present calculations are different
in the microscopic part and in the macroscopic part, different counting schemes could also be
employed. Since the droplet-model constants used in the microscopic expressions are obtained
from four primary constants®? and nuclear masses were used only to give rough estimates of
these constants, one may not wish to regard them as determined from mass-like quantities. One
of the four primary constants is the nuclear radius constant rg, which has the same value as
we use in our macroscopic model. Therefore, only three remain that could be considered as
additional FRDM constants. With this classification scheme the number of constants adjusted
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Table 2: Constants in the FRLDM. The third column gives the number of constants adjusted to
nuclear masses or mass-like quantities such as odd-even mass differences or fission-barrier heights. The
fourth column gives the number of constants determined from other considerations.

Constants Comment Mass-like  Other

My, M,, e Macroscopic fundamental constants 0 3

Gel, TOs Tp, Macroscopic constants from considerations 0 5

a, Qden other than mass-like data

W, h Macroscopic constants obtained 2 0
in prior adjustments to mass-like data

Qy,y Ky, s, Ks, Macroscopic constants determined by 6 0

ap, Ca current least-squares adjustments

he, Mmapue Microscopic fundamental constants 0 2

Vs, Vi, Aden, Bden, Ceur, Microscopic constants 0 11

kpa lpa kn, ln, Apot, K

Npass P, Cs, Tmic Microscopic constants determined 4 0
from considerations of mass-like quantities

ai, az, J, K, L, Q Droplet-model constants that enter the single- 3 0
particle potential (see discussion in text)

Subtotals 15 21

Total 36

to mass-like quantities remains 16 and the total number of constants in the model increases
from 38 to 41. Alternatively, if we do count the three primary constants as adjusted to nuclear
masses, the total number of FRDM constants is 41, while the number adjusted to mass-like
quantities increases from 16 to 19.

3.2 Constants in the FRLDM

The constants in the FRLDM, which are either identical to or similar to the constants in the
FRDM, are enumerated in Table 2. We mentioned in the discussion of the FRDM constants
that the six constants in the last line of Table 1 would converge to the values of the same
constants listed earlier in the table after a sufficient number of iterations. In the FRDM these
constants therefore need not be regarded as additional constants. In contrast, in the FRLDM
they must be regarded as constants obtained from adjustments to mass-like quantities. However,
as mentioned in the discussion of the FRDM constants, these constants are all obtained from
three primary constants, so we only include three in this category.

4 Results

4.1 Determination of ground-state shapes and masses

The adjustment of constants in the macroscopic model is simplified enormously because the
ground-state shape and fission saddle-point shape are approximately independent of the precise
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values of these constants when they are varied within a reasonable range®. We therefore
calculate the ground-state deformation with one set of constants and subsequently determine
the various terms in the mass expression at this deformation. The constants of the macroscopic
model can then be adjusted, with the nuclear shapes remaining fixed.

A significant advantage of this approach is that the effect of new features can often be
investigated without repeating the entire calculation from the beginning, which would take
about 100 hours of CRAY-1 CPU time. For example, when we investigated different pairing
models and determined the optimum value of the pairing constant, we needed to recalculate only
the pairing-energy term for each of the 8979 nuclei in our study. Since we have in the initial part
of the calculation determined ground-state shapes and stored the corresponding ground-state
single-particle levels for all nuclei on disc, we need only read in the single-particle levels, do
the pairing calculation, and readjust the model constants to obtain the effect of a new pairing
model or new pairing-model constant. Such a study takes only about 20 minutes of CRAY-1
CPU time.

Our determination of mass-model constants and ground-state nuclear masses involves several
steps. We first briefly list these steps and then continue with a more extensive discussion.

1. Potential-energy surfaces are calculated versus es and €4. In this calculation, which was
actually performed already in 1987, the FRLDM as defined in Ref. 3 is used, except that
for the pairing calculations the BCS approximation is used instead of the LN approxima-
tion. From these potential-energy surfaces the ground-state €5 and €4 deformations are
determined.

2. The ground-state energy is minimized with respect to €3 and also with respect to eg for
fixed values of €9 and ¢4.

3. When the resulting ground-state shapes have been determined, single-particle levels are
calculated for each nucleus at the appropriate deformation and stored on disc. The shell-
plus-pairing correction is also calculated and stored on disc at this time. The shell-plus-
pairing correction is then available for use in the calculation of ground-state masses and
in the determination of macroscopic-model constants. It is the only microscopic quantity
required for the mass adjustment.

4. Now that the ground-state shapes have been determined, the various shape-dependent
functions that occur in the macroscopic energy are evaluated at each appropriate ground-
state shape and stored on disc.

5. Analogous steps to those above for masses are carried out also for 28 fission-barrier heights.

6. Least-squares adjustments are now performed, with the nuclear masses weighted 80% and
the fission-barrier heights weighted 20%. The macroscopic-model constants are determined
and the ground-state masses and the fission barriers are calculated.

7. Finally, when the ground-state shapes and masses and fission-barrier heights are known,
other properties such as -decay half-lives, 8-delayed neutron-emission and fission proba-
bilities, and @ values for o decay are calculated.

For the major portion of the potential-energy-surface calculation we have chosen the following
grid:

e = —0.50 (0.05) 0.50, €4 = —0.16 (0.04) 0.16 (121)

When the ground-state minimum is outside this grid we have used instead the expanded, but

less-dense grid:
o =—1.0(0.1) 1.0, €4 =—0.28(0.07) 0.28 (122)



P. Mdller, J. R. Nixz, W. D. Myers, and W. J. Swiatecki/Nuclear Masses 33

For large values of €4 the nuclear shapes develop somewhat unnatural wiggles. These wiggles
can be removed and the energy lowered by use of higher multipoles in the specification of the
nuclear shape 3%6'. We include in the first step of our calculations one higher multipole, namely
€. However, since in this step we want to consider only two independent shape coordinates, we
determine eg at each value of €5 and €4 by minimizing the macroscopic potential energy for 4°Pu.
For heavy nuclei the value of €5 obtained in such a minimization is approximately independent
of the nucleus considered. On the other hand, for very light nuclei minimization with respect
to € (and in some cases with respect to €4) leads to values corresponding to unphysical shapes.
These arise because if the distance across a wiggle on the nuclear surface is of the order of
the range of the Yukawa-plus-exponential folding function, the nuclear energy increases very
little but the Coulomb energy decreases strongly with increasing deformation. For e we avoid
this difficulty by minimizing the energy for ?4°Pu, which is sufficiently large that also with eg
distortions included the wiggles on the surface are larger than the range of the Yukawa-plus-
exponential function. In the light region we avoid unphysical values of €4 by including only a
physical range of values in our grid.

We use the single-particle states of the folded-Yukawa single-particle potential to calculate
the shell-plus-pairing corrections at each grid point. Although the constants of the single-particle
potential depend on Z and N, for the determination of the ground-state values of €5 and €4 we
use the same set of calculated levels for a region of neighboring nuclei, since it is too time-
consuming to repeat the diagonalization for each value of Z and N. However, when the same
levels are used for a moderately large region of nuclei, the shell correction for a magic nucleus
calculated in this way may differ by 1 MeV or more from the shell correction calculated with
the single-particle potential appropriate to that particular nucleus.

To overcome this difficulty we proceed by first noting that most constants of the single-
particle potential have been determined for nuclei close to line of S-stability. Because of this
and because the radius of the single-particle potential is one of its most important constants, we
reduce the Z and N dependence of the constants of the microscopic model to an A dependence
only. We next divide the nuclear chart into regions of suitable size, choosing for each region one
set of single-particle constants. The regions are centered about the mass numbers A = 16, 20,
40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, and 340. The individual
values of Z and N for each region are taken to be the closest integers corresponding to Green’s
approximation %2 to the line of 3 stability, namely

0.4A2

N—-—Z=——
A+ 200

(123)

For each nucleus with a mass number different from one of these central mass numbers
we calculate the microscopic corrections for two sets of constants. For example, nuclei with
201 < A < 239 are included in the A = 220 calculation and nuclei with 221 < A < 259 are
included in the A = 240 calculation. To determine FEg,, for, say, a nucleus with A = 225 we
linearly interpolate on the es—e4 grid in terms of A between the result for A = 220 and the
result for A = 240. We find that such an interpolation gives results that agree to within a
few-hundred keV with those obtained with a single-particle potential appropriate to the specific
nuclei concerned.

Once the ground-state values of €2 and €4 are determined from the minimum of Es, in this
way, the shell-plus-pairing corrections are recalculated at these ground-state shapes with the
exact single-particle potential appropriate to each of the 8979 nuclei. The slight approximation
made in calculating the potential-energy surfaces affects only the calculation of the shape and
has a negligible effect on the final energy.

After the ground-state €5 and €4 deformations are determined, we investigate the stability of
the ground state with respect to €3 and €5 shape degrees of freedom. Rather than simultaneously
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Table 3: Determination of the pairing constant r,;.. See text for explanation of the listed quan-
tities.

Oth rms rms rms
Tmic Mass model ALN Ath.mass Sn
(MeV) (MeV) (MeV) (MeV) (MeV)

3.1 0.6746 0.1740  0.2035 0.409
3.2 0.6694 0.1691  0.2044 0.411
3.3 0.6695 0.1675  0.2091 0.416
3.5 0.6733 0.1745  0.2287 0.432

varying all shape degrees of freedom, we instead vary e3 and eg separately, with €5 and €4 held
fixed at the values previously determined. When €3 is varied €g is set equal to the value used
in the original minimization with respect to €3 and €4, and when ¢g is varied €3 is set equal
to zero. The deeper of the two minima obtained in these two minimizations is selected as the
ground state. The importance of the e3 and €5 shape degrees of freedom is discussed further
in Ref. 10. Because surface wiggles should not become too small relative to the range in the
Yukawa-plus-exponential function, the €5 minimization is carried out only for nuclei with A > 60.

After the ground-state shapes are determined, the shell-plus-pairing corrections and shape-
dependent macroscopic functions are calculated and stored on disc. The programs that use this
information to determine the macroscopic-model constants and calculate ground-state masses
are then run. Although the least-squares adjustment is a nonlinear one, it takes only a few
minutes to find the optimum constant set in an 8-constant variation and to calculate the final
mass table. At this point it is relatively simple to investigate alternative model assumptions.
As an example, we discuss the results of one such investigation concerning the effect of varying
the microscopic pairing constant rpjc.

In our earlier pairing-model studies® we determined ;. in Eqs. (104) and (105) by mini-
mizing the rms deviation between pairing gaps calculated in the LN model and experimental
pairing gaps. An alternative possibility is to find ry;c by minimizing the error in the mass model.
Because our change in the order of the Strutinsky shell correction does influence slightly the
pairing calculations through the determination of G from the effective-interaction pairing gap
Ag, a small change in ;. could in principle be required to obtain an optimum pairing calcula-
tion. In a study of how the model error oy, and the rms errors of the Lipkin-Nogami pairing gap
AN, the theoretical-mass pairing gap Agn.mass, and the neutron separation energy S, depend
on Tmic, we first calculate the ground-state shell-plus-pairing corrections for several values of
rmic- For each of these values we then determine a set of macroscopic-model constants and gen-
erate a full-fledged mass table. In this process we also obtain microscopic pairing quantities and
neutron separation energies and compare with experimental values. Recall that Ay is the sum
of the pairing gap A and the number fluctuation constant As that occur in the Lipkin-Nogami
equations. The pairing gap Agh.mass 1S determined from odd-even theoretical mass differences.
The results are summarized in Table 3.

Ideally, the minimum deviation should occur for all quantities at the same value of 7,;c, which
is almost but not quite the case. As seen in Table 3, all minima are close to the mass-model
minimum at ryi. = 3.2 MeV. We therefore choose this value of ry;. for our microscopic pairing
calculations. Experimental pairing gaps determined from odd-even mass differences contain large
errors arising from non-smooth contributions to the mass surface other than pairing effects, for
example, from shape transitions and gaps in the deformed single-particle level spectra. Since such
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contributions are equally present in Acyp, and Agy mass, they should cancel out approximately
in the difference between these two quantities, if the mass model errors were sufficiently small.
Consequently, the other non-smooth contributions to the mass surface are not expected to affect
an rms minimization of A, mass. It 18 therefore of interest to note that our chosen value of
rmic 1S intermediate between what would have been obtained from considering Ay mass and Apy
deviations.

The FRDM, which includes Coulomb redistribution effects, is now our preferred nuclear
mass model. Relative to the work described in Ref. 10, the following further improvements have
been incorporated into the model. First, it was found that the + zero-point energy could not
be calculated with sufficient accuracy in our current model. It is therefore no longer included,
whereas the ey zero-point energy is still retained. Second, we have also returned to our original
choice of basis functions corresponding to 12 oscillator shells for all A values, instead of using
somewhat fewer basis functions for lighter nuclei '°. Third, we now use an eighth-order Struti-
nsky shell-correction with range vg = 1.0hwBs instead of our earlier choice of a sixth-order
Strutinsky shell correction with the same range coefficient but no dependence on surface area.
The change in zero-point energy reduced the error in the calculated neutron separation energies
from 0.551 MeV to 0.444 MeV and the error in the calculated masses from 0.778 MeV 19 to
0.773 MeV. The second and third improvements further reduced the separation-energy error to
0.411 MeV and the mass-model error to 0.669 MeV. The rms error for At mass has decreased
in a similar manner as the error in S;. Although the effect of the mass-model improvements
on Ary is small, the effect on Aip mass is dramatic. Relative to our earlier pairing calculation?,
the improvement is more than 20%. It is no accident that both S, and A, mass Showed similar
improvements. Both are determined from mass differences between nearby masses, and such
differences dramatically improved when the inaccurate ~y zero-point energies were excluded from
the calculations. The constants of the final model were presented in an earlier section.

As seen in Table 3, the error in our mass model is now 0.669 MeV. We have also performed
a mass calculation with the FRLDM as the macroscopic model and identical shell-plus-pairing
corrections as in the FRDM calculation. For the FRLDM the corresponding error is 0.779 MeV,
which is 16% higher.

Figure 1 shows the results of the FRDM calculation. As usual, the top part shows the dif-
ferences between measured masses and the spherical macroscopic FRDM contributions plotted
against the neutron number N, with isotopes of a particular element connected by a line. These
experimental microscopic corrections are to be compared with the calculated microscopic cor-
rections plotted in the middle part of the figure. When the macroscopic and microscopic parts
of the mass calculation are combined and subtracted from the measured masses, the deviations
in the bottom part of the figure remain. The trends of the error in the heavy region suggest
that this mass model should be quite reliable for nuclei beyond the current end of the periodic
system. This has been made all the more plausible by simulations discussed in Sec. 4.3 on ex-
trapability. When €3 and eg shape degrees of freedom are included in the mass calculations, it
becomes clear that the FRLDM, which does not treat Coulomb redistribution effects, is deficient
in the heavy-element region, as is seen in Fig. 2. Thus, our preferred mass model is now the
FRDM, which includes compressibility effects and the associated Coulomb redistribution.

4.2 Compressibility

We have earlier # studied how the discrepancy between measured masses and calculated masses
depends on the compressibility constant K and on the new exponential term. In this earlier in-
vestigation we used the 1984 version of the FRDM°. We found that the minimum error occurred
for K = 324 MeV. For this value the rms deviation between calculated and experimental masses
was 0.666 MeV. For the conventional value K = 240 MeV the rms error was only marginally
higher, namely 0.676 MeV. Because of the relative insensitivity of the rms error to the value of
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the compressibility constant K we retained ¢ the historical value K = 240 MeV, as we also do
here.

It is of interest to investigate the sensitivity of the model error to K also in the current
version of the model. In Fig. 3 the solid circles connected by a solid line show the theoretical
error in the mass model as a function of 1/K. For each value of K the constants in the model
are determined by minimizing the same weighted sum of barrier and mass errors that is referred
to under point 6 in Sec. 4.1. However, only the theoretical error in the mass model itself is
plotted. The arrow at K = 243 MeV indicates the optimum value of K obtained when the
compressibility coefficient is varied along with the other constants. Thus, in our current model
we obtain in a least-squares minimization a compressibility coefficient that is close to the value
K = 240 MeV that was adopted from other considerations, but the determination is clearly
subject to a large uncertainty.

We also investigate how the error for nuclei with N > 65 depends on K. This dependence
is shown as solid squares connected by a long-dashed line. The model constants have the
same values as obtained from the adjustments corresponding to the solid circles. Thus, no new
adjustment is performed to this limited region of nuclei; we only investigate the behavior of the
error associated with this region.

Finally, we show as open circles connected by a short-dashed line the result obtained in an
adjustment without the exponential term. Here the minimum of the weighted sum of mass and
barrier errors occurs at K = 451 MeV. The minimum of the function actually plotted, which is
the mass error only, occurs at a slightly higher value of K.

The relatively low curvature of the solid curve shows that K cannot be reliably determined
from an adjustment to nuclear masses. The conventional droplet model value K = 240 MeV is
consistent with the result we obtain in a least-squares adjustment to masses and fission barrier
heights, but from the adjustment alone one would not be able to rule out that K has some other
value in the range from somewhat below 200 MeV to about 500 MeV.

The long-dashed curve shows that heavy nuclei in particular disfavor values of K close to
infinity. For heavy nuclei with N > 65 the error in the FRDM increases by 25% from its
minimum value as K approaches +o0o, whereas the increase is only 8% when all nuclei are
considered. This observation has been made earlier and was taken as evidence for a Coulomb
redistribution effect 19.

The short-dashed curve giving the results without an exponential term in the mass model
is moderately incompatible with a compressibility coefficient close to 240 MeV and completely
rules out a significantly lower value. However, our preferred treatment of the compressibility is
the formulation that includes the exponential term, in which treatment the restrictions on K
are the much less severe ones given above.

4.3 Extrapability

One test of the reliability of a nuclear mass model is to compare deviations between measured
and calculated masses in new regions of nuclei that were not considered when the constants
of the model were determined to deviations in the original region. This type of analysis was
used earlier by Haustein %3. However, we here considerably modify his approach. In addition to
examining the raw differences between measured and calculated masses, we use these differences
to determine the model mean discrepancy g from the true masses and the model standard
deviation oy, around this mean, for new regions of nuclei. Whereas the raw differences do not
show the true behavior of the theoretical error because errors in the measurements contribute
to these differences, by use of the ideas developed in Sec. 2.1 we are able to estimate the true
mean ), and standard deviation oy, of the theoretical error term eyy,.

Since our new mass model was developed only recently, we cannot test its reliability in new
regions of nuclei because sufficiently many new data points are not available. Therefore, we
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Table 4: Comparison of errors of two different mass calculations. The errors are tabulated both for the
region in which the constants were originally adjusted and for a set of new nuclei that were not taken into
account in the determination of the constants of the mass models. The error ratio is the ratio between
the numbers in columns 8 and 3.

Original nuclei New nuclei
Model rms Oth Nhue rms Hth Oth Othu=0 ErTOr
(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) ratio
FRLDM (1981) 0.835 0.831 351 0.911 —0.321 0.826 0.884 1.06
FRDM (1992) 0.673 0.671 351 0.735 —0.004 0.686 0.686 1.02

have resorted to a simple simulation, in which we adjusted the constants in the model to the
same experimental data set that was used in our 1981 mass calculation 2. Consequently, this
calculation is not completely identical to the one on which Fig. 1 is based. The differences
between the 351 new masses that are now measured *® and the calculated masses are plotted
versus the number of neutrons from S-stability in Fig. 4. We observe no systematic increase in
the error with increasing number of neutrons from S-stability. For the new region of nuclei the
square root of the second central moment is 0.686 MeV, compared to 0.671 MeV in the region
where the parameters were adjusted, representing an increase of only 2%. In contrast, mass
models based on postulated shell-correction terms and on a correspondingly larger number of
constants normally diverge outside the region where the constants were determined 112

To study more quantitatively how the error depends upon the distance from (§-stability, we
introduce bins in the error plot sufficiently wide to contain about 10-20 points and calculate the
mean error and standard deviation about the mean for each of these bins by use of the methods
described in Sec. 2.1. The results for our 1981 FRLDM and for our 1992 FRDM, but adjusted
only to the same data set as was used in our 1981 calculation, are shown in Fig. 5. For each
model the central, light-gray band representing the original error region extends one (global)
standard deviation oy, on each side of zero. The solid dots connected by a thick black line
represent the mean of the error pyy, for nuclei that were not considered when the constants in
the model were determined. The thin black lines represent the standard deviation for each bin.
The dark-gray areas indicate regions for which the individual bin deviations are not contained
within the original global error. The properties of the two models displayed in Figs. 5 are
summarized in Table 4.

To test the reliability of the FRDM for extrapolation beyond the heaviest known elements we
have performed a rather severe test in which we adjust the constants in the model only to data
in the region Z, N > 28 and A < 208. There are 1110 known masses in this region compared
to 1654 in the region Z, N > 8 used in our standard adjustment. Thus, about one third of all
known masses are excluded, with nuclei removed from both ends of the region of adjustment.
We then apply the model with these constants to the calculation of all known masses in our
standard region and compare the results to our standard model in Fig. 6. The error for the
known nuclei is now 0.745 MeV, compared to 0.669 MeV with our standard model adjusted to
all known nuclei. Although there is a noticeable increase of the error in the regions that were
not included in the adjustment, an inspection of Fig. 6 indicates that the increased error in the
heavy region is not due to a systematic divergence of the mean error, but rather to a somewhat
larger scatter in the error.

In our standard model the mass excesses of 272110 and ?%110 are 133.82 MeV and 165.68 MeV,
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respectively. In our restricted adjustment we obtain 133.65 MeV and 166.79 MeV, respectively.
Thus, although 288110 is 80 units in A away from the last nucleus included in the restricted
adjustment, the mass obtained in this numerical experiment is only about 1 MeV different from
that obtained in the calculation whose constants were adjusted to nuclei up to 50 units in A
closer to the superheavy region. Since our standard calculation is adjusted so much closer to
the superheavy region than is the numerical experiment, we feel that it should be accurate to
about an MeV in the superheavy region. Since models with and without Coulomb redistribu-
tion energies often differ by considerably more, the masses of superheavy elements could provide
very strong further confirmation of the existence of Coulomb redistribution effects. A suitable
nucleus for such a test is 272110. The FRDM, which includes Coulomb-redistribution effects,
predicts a mass excess of 133.82 MeV for this nucleus, whereas the FRLDM, which does not
include Coulomb-redistribution effects, predicts 136.61 MeV.

Figure 1 shows that as the lighter region is approached the error gradually increases in a
systematic way. We have explored this possibility by first determining the model error for limited
regions of nuclei by use of Eq. (9). We select A = 25(25)250 as centerpoints of the regions and
define each region to extend from Acenter — 24 t0 Acenter + 25. The errors in these restricted
regions are shown as solid circles in Fig. 7. Since the trend of the error looks approximately like
¢/A* we have determined the parameters of this assumed error function by use of the maximum-
likelihood equations (15) and (16). We find ¢ = 8.62 MeV and a = 0.57. The error function
corresponding to these parameters is plotted as a solid line.

4.4 Fission barriers

Calculated heights of the outer peak in the fission barrier are compared to measured values in
Table 5. The results are also shown graphically in Fig. 8. Extensive fission studies based on
earlier and current versions of the models discussed here are presented in Refs. 30, 31, 33, and
64-69.

4.5 Ground-state masses and deformations

In the Table we tabulate our calculated ground-state deformations in the € parameterization,
the corresponding coefficients 8 in a spherical-harmonics expansion, the atomic mass excesses
and microscopic energies calculated in both the FRDM and FRLDM, and experimental masses
and associated errors that were used in the adjustment of model constants.

To give an overview, the tabulated FRDM quantities are plotted versus /N and Z in the form
of color contour diagrams. The calculated ground-state deformations es, €3, €4, and €5 are shown
in Figs. 9-12, and the corresponding coefficients fq, |83, B4, and [ are shown in Figs. 13-16.
We observe some features that are by now well-known. For example, the absolute value of the
quadrupole deformation ey increases by about 0.05 for each deformed region below the actinide
region. Oblate deformations occur in transition regions on the heavy side of most deformed
regions. The hexadecapole deformation €4 is large and negative in the beginning of deformed
regions and large and positive in the end of deformed regions. The coefficients (3, 54, and Sg
have the opposite sign from the corresponding ¢ deformations, whereas B has the same sign as
€2 but is roughly 10% larger.

The microscopic energy FEp. is plotted in Fig. 17. The familiar doubly magic regions around
1g88n50, lggSngg, and 23%Pb126 stand out clearly. The center of the superheavy region is located
at 29411579. The large negative microscopic correction originating in the superheavy region
extends a significant distance towards the southwest and reaches into the deformed actinide
region. It is these large, negative microscopic corrections that have made possible the extension
of the known elements as far as %88Mt157. As is seen in Figs. 18 and 19, the largest effects of €3
and g in experimentally accessible regions occur around ?22Raj34 and 232Fmjs0, respectively.
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Table 5: Comparison of experimental and calculated fission-barrier heights for 28 nuclei.

Z N A Experimental Calculated Discrepancy

barrier barrier

(MeV) (MeV) (MeV)

48 61 109 34.00 35.69 —1.69
66 94 160 27.40 27.88 —0.48
76 110 186 23.40 21.21 2.19
112 188 24.20 21.07 3.13

80 118 198 20.40 19.16 1.24
84 126 210 20.95 21.81 —0.86
128 212 19.50 19.69 —0.19
88 140 228 8.10 8.41 -0.31
90 138 228 6.50 7.43 —0.93
140 230 7.00 7.57 —0.57
142 232 6.30 7.63 —1.33
144 234 6.65 7.44 —0.79

92 140 232 5.40 6.61 —-1.21
142 234 5.80 6.79 —0.99
144 236 5.75 6.65 -0.90
146 238 5.90 4.89 1.01
148 240 5.80 5.59 0.21

94 144 238 5.30 4.85 0.45
146 240 5.50 4.74 0.76
148 242 5.50 5.25 0.25
150 244 5.30 5.78 —0.48
152 246 5.30 6.27 —0.97
96 146 242 5.00 4.24 0.76
148 244 5.00 5.05 —0.05
150 246 4.70 5.69 —-0.99
152 248 5.00 6.07 —1.07
154 250 4.40 5.51 —1.11
98 154 252 4.80 5.31 —0.51

In Fig. 20 we show the discrepancy between experimental and calculated masses in the form
of a contour diagram versus N and Z. Above N = 65 there are only a few nuclei with an error
marginally larger than 1 MeV. The noticeable errors near Z = 40, N = 56 are probably related
to the unique ' shell structure in this region and the reinforcement of the N = 56 shell closure
for proton number Z = 40 and proton numbers just below. Such proton-neutron interactions
are not accurately described within any simple single-particle effective-interaction framework.
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Figure captions

Comparison of experimental and calculated microscopic energies Fy;. for 1654
nuclei, for a macroscopic model corresponding to the FRDM. The bottom part
showing the difference between these two quantities is equivalent to the difference
between measured and calculated ground-state masses. There are almost no
systematic errors remaining for nuclei with N > 65, for which region the error is
only 0.448 MeV. The results shown in this figure represent our new mass model.
The lines are drawn through isotope chains.

Analogous to Fig. 1, but for the FRLDM, which contains no Coulomb-redistribu-
tion terms. This leads to the systematic negative errors in the heavy region, which
indicate that the calculated masses are systematically too high.

Relation between the compressibility coefficient K and the mass-model error.
Calculated values are indicated by symbols, which are connected by curves to
guide the eye. In our standard FRDM, which is our preferred model, the error
depends only relatively weakly on the compressibility coefficient in the range 200
MeV < K < 500 MeV, as is shown by the solid circles. Without the exponential
term a relatively high compressibility coefficient would be required. The error
in the heavy region, shown by the solid squares, indicates that heavy nuclei, in
particular, do not favor very large values of K. For heavy nuclei with N > 65
the model error increases by 25% from its minimum value as K approaches +oo,
whereas the increase is only 8% when all nuclei are considered.

Calculation showing the reliability of the FRDM in new regions of nuclei. Here
we use a smaller set of measured masses to determine the constants of the model
than in the full calculation shown in Fig. 1. The errors for nuclei not included in
the adjustment are displayed in this figure. The error is only 2% larger in the new
region compared to that in the region where the constants were determined. The
two largest deviations occur for 220 and 240, which probably indicates that this
region of light very neutron-rich nuclei is outside the range of model applicability.
Proton number 8 is the lowest value of Z that we consider in this model. For
the position of the line of 3 stability we use Green’s approximation given by
Eq. (123). This equation is solved for each proton number Z assuming A and
N are floating-point numbers. Thus, the points in this figure are located at
non-integral values of V.

Comparison of the error behavior for two models applied to new nuclei versus
the number of neutrons from S-stability. See text for details.

Test of extrapability of the FRDM towards the superheavy region. The top
part of the figure shows the error of the standard FRDM. In the lower part the
error was obtained from a mass model whose constants were determined from
adjustments to the restricted set of nuclei with Z, N > 28 and A < 208. In the
light region of nuclei there is no noticeable divergence of the results obtained
in the restricted adjustment. In the heavy region there is some increase in the
spread of the error, but no systematic divergence of the mean error. Based on
the more detailed discussion in the text we deduce that our calculated masses for
the superheavy elements are accurate to about one MeV.

Error in the mass calculation as a function of mass number A. The theoretical
error has been determined for limited regions throughout the periodic system.
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The error represented by each solid circle is based on nuclei in a region that
extends 24 mass units below the circle and 25 mass units above the circle. The
points are well approximated by the function 8.62 MeV/A%57.

Comparison of experimental and calculated fission-barrier heights for 28 nuclei.
Isotopes are connected by lines.

Calculated ground-state values of |ez| for 7969 nuclei with N < 200. Oblate
shapes are indicated with horizontal black lines. About 14 deformed regions
stand out, bordered or partially bordered by blue lines corresponding to magic
nucleon numbers. The magnitude of the deformation in the deformed regions
increases by about 0.05 with successively lighter regions or as one goes from
neutron-rich to proton-rich regions. Highly deformed superheavy nuclei with
N > 178 usually have very low fission barriers, and should consequently have
spontaneous-fission half-lives that are too short to be detectable.

Calculated ground-state values of €3 for 7969 nuclei with N < 200. Most nuclei
in the investigated region inside the black line are stable with respect to mass-
asymmetric octupole deformations; only 640 nuclei are unstable with respect to
these deformations. The largest effects of experimental significance are centered
around 2§§Ra134.

Calculated ground-state values of ¢4 for 7969 nuclei with N < 200. Character-
istically, the values are large and negative in the beginning of major deformed
regions and large and positive in the end of major deformed regions. In accor-
dance with this general trend, €4 is large and positive near the rock of stability
in the vicinity of 272110 near the end of the deformed “actinide” region.

Calculated ground-state values of eg for 7969 nuclei with N < 200. The behavior
of eg is less regular than that of the lower, even multipole distortions.

Calculated ground-state values of |33] for 7969 nuclei with N < 200, which have
been obtained by use of the transformation (38) from the e deformations. Oblate
shapes are indicated by horizontal black lines. Comments given in Fig. 9 also
apply here.

Calculated ground-state values of |53] for 7969 nuclei with N < 200, which have
been obtained by use of the transformation (38) from the e deformations.

Calculated ground-state values of 4 for 7969 nuclei with N < 200, which have
been obtained by use of the transformation (38) from the e deformations. Com-
ments given in Fig. 11 also apply here, but note that the sign of 84 is opposite
that of €4 when significant deformations develop.

Calculated ground-state values of Bg for 7969 nuclei with N < 200, which have
been obtained by use of the transformation (38) from the e deformations. Com-
ments given in Fig. 12 also apply here, but note that the sign of fGg is opposite
that of eg when significant deformations develop.

Calculated ground-state microscopic energies Fy;c for 7969 nuclei with N < 200.
Well-known doubly magic regions at 1g88n50, 1%%81182, and 23%Pb126 stand out
clearly. The minimum in the superheavy region is offset somewhat from 29811454
and is located instead at 2°4115,79. An interesting feature, also present in our
first mass calculation >4, is the rock of stability at 272Mt;e3.
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Fig. 18

Fig. 19

Fig. 20

Calculated ground-state octupole instability for 7969 nuclei with N < 200. Only
640 nuclei exhibit any instability with respect to this shape degree of free-
dom. The largest effect in the experimentally accessible region is —1.41 MeV
for 2§3A0133.

Calculated ground-state hexacontatetrapole instability for 7969 nuclei with N <
200. The instability is relative to the energy corresponding to the macroscopic
equilibrium value of €g, with €3 set equal to zero. The largest effect is —1.29 MeV
for 28519}38152.

Discrepancy between measured and calculated masses. Above N = 65 only a few
discrepancies are marginally more than 1 MeV. There is a gradual increase of
the error towards the light region. The large, fluctuating error near N = 60 is
probably due to deviations between our simple effective interaction and the true
nuclear force. It is well-known that for Z = 40 there is a re-enforcement of the
N = 56 sub-shell closure. Such effects cannot be described within the framework
of a single-particle model.
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EXPLANATION OF TABLE

Table. Calculated Nuclear Ground-State Masses and Deformations, Compared to
Experimental Masses Where Available

Z

=

€2
€3
€q

€6

sym
6y

Ba
B3
Ba
Be

Emic

My,
Mcxp

Oexp

EFL

mic

FL
M,

Proton number. The mass table is ordered by increasing proton number. The
corresponding chemical symbol of each named element is given in parentheses.

Neutron number
Mass number

Calculated ground-state quadrupole deformation in the Nilsson perturbed-spheroid
parameterization

Calculated ground-state octupole deformation in the Nilsson perturbed-spheroid
parameterization

Calculated ground-state hexadecapole deformation in the Nilsson perturbed-
spheroid parameterization

Calculated ground-state hexacontatetrapole deformation in the Nilsson perturbed-
spheroid parameterization. The value in this column is used in the mass calcu-
lation. If €3 # 0 then €5 was not varied but was instead held fixed at the value
that minimizes the macroscopic energy for 240Pu.

Calculated ground-state hexacontatetrapole deformation in the Nilsson perturbed-
spheroid parameterization for e3 = 0. This is the optimum value of €5 when mass
asymmetry is not considered. It is provided for use in computer codes or other
applications that cannot take into account mass-asymmetric shapes.

Calculated quadrupole deformation of the nuclear ground-state expressed in the
spherical-harmonics expansion defined by Eq. (37)

Calculated octupole deformation of the nuclear ground-state expressed in the
spherical-harmonics expansion defined by Eq. (37)

Calculated hexadecapole deformation of the nuclear ground-state expressed in
the spherical-harmonics expansion defined by Eq. (37)

Calculated hexacontatetrapole deformation of the nuclear ground-state expressed
in the spherical-harmonics expansion defined by Eq. (37)

Calculated ground-state microscopic energy, given by the difference between the
calculated ground-state atomic mass excess and the spherical macroscopic energy
calculated from Eq. (40), in our preferred model, the FRDM

Calculated ground-state atomic mass excess, in our preferred model, the FRDM

Experimental ground-state atomic mass excess in the 1989 midstream evaluation
of Audi®, with four revisions

Experimental error associated with the ground-state atomic mass excess in the
1989 midstream evaluation of Audi?®, with four revisions

Calculated ground-state microscopic energy, given by the difference between the
calculated ground-state atomic mass excess and the spherical macroscopic energy
calculated from Eq. (62), in the FRLDM

Calculated ground-state atomic mass excess, in the FRLDM

Absence of an entry in €3, €5, and 83 means that the ground state is symmetric in shape.
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10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20.
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