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Abstract: In the last several years new experimental data have become available on alpha-decay
chains starting in the predicted deformed superheavy region near 272110. This has promoted
new interest in nuclear mass formulas and how well they extrapolate to regions far beyond
where experimental masses were previously known. We here focus on two such mass mod-
els, namely the fermion dynamical symmetry model and the finite-range droplet model. We
have chosen these models, since they both reproduce previously known actinide masses with
good accuracy, but rapidly diverge from each other in the region of the recently observed
new elements. Furthermore, the two models have been the subject to animated discussions
concerning which one gives the most reliable predictions of nuclear masses in the superheavy
region and in the terminating region of the r-process. The new data support the predictions
of the finite-range droplet model. We discuss the fermion dynamical symmetry model and its
application [1] to the calculation of trans-Pb nuclear masses. As will be shown, the model
contains unphysical features and has many more free constants than claimed. The values
obtained for the constants and the model agreement with data in the region of adjustment
are therefore of no particular significance and severe divergences occur for recently discovered
nuclei outside the region of adjustment.

1 Introduction

In microscopic nuclear-structure calculations one cannot solve the full many-body problem
with the true nucleon-nucleon force. Instead, the problem is always considerably reduced
to some type of model with effective forces. Although both the model and the force used
are always drastic simplifications of reality, the aim in constructing these models is that
they both be solvable and retain the ability to describe and predict, at a useful level of
accuracy, some set of nuclear-structure properties. We here discuss two implementations of
microscopic nuclear-structure models, in particular as applied to the calculation of nuclear
masses. One model is the FDSM (fermion dynamical-symmetry model) [1,2], the other the
FRDM (finite-range droplet model) [3–5] version of the macroscopic-microscopic method as
implemented in a series of mass calculations.

In the early 1990’ies the constants of both models were determined, partly from least-
squares adjustments to nuclear masses. For the FDSM model, which was adjusted to Pb
and trans-Pb masses only the rms error obtained was 0.22 MeV for this restricted region.
For the FRDM, which was adjusted to all known masses with proton number Z ≥ 8 and
neutron number N ≥ 8 the model error was 0.669 MeV for this entire region of nuclei.
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However, the two models predicted quite different masses for unknown nuclei already a few
nuclei away from the known region. For nuclei further away, notably in the superheavy
region and along the upper part of the r-process path, the predictions of the two models
diverge even more.

In the first half of the 1990’ies it was often debated which one of the models is the
most reliable for predicting unknown masses and in a 1996 paper [6], the proponents for
the FDSM model stated:

The picture presented here (i.e. the FDSM model) suggest trends for the heaviest
nuclei that are rather different relative to those expected in traditional mass
models (one of which is FRDM) These could be tested by further observations of
isotopes in the Z = 110 - 114 region, by a continued failure to find superheavy
elements at their historically expected location, and by observables associated
with r-process element production.

Today, some years later, several new elements and isotopes in the Z = 110–112 region have
been observed. Thus, some of the necessary experimental observations, needed to perform
the test asked for in the 1996 FDSM paper, are now available. The test is carried out in
this paper. Since the FRLDM and FDSM give very different masses in the new region, at
least one of the models will have to fail this test, and we present here a detailed analysis of
the reasons for this failure.

It could be argued that a model which fails does not deserve a detailed study. We are,
however, of a different opinion. The approaches used in the development of the FRDM and
FDSM models are very different in the strategies used to reproduce known data, in the way
in which the models are simplified, in the way in which model constants are allowed to be
adjusted, and finally in the approach to establish the predictive power of the models. It is
therefore well justified to tell the story of these models. A detailed comparison between the
FRDM and FDSM will illuminate all the points mentioned above. We are convinced that
such an analysis will provide essential insights for the future.

Since an important feature of this paper is to discuss model constants and how to
determine their values, including how to adjust some model constants to data by use of the
method of least-squares, a detailed, complete description of both models is required. To
follow many of the arguments presented in this paper, such a detailed knowledge of the role
of each constant and the place at which it appears in the equations is necessary. For the
FRDM we are able to refer to earlier work [5,7] for such a description and complete account
and counting of the constants; for the FDSM we need to perform a similar accounting of
the model constants and their significance here.

We mentioned that nuclear-structure calculations are performed with models and effec-
tive forces that are severe approximations of reality but that retain “essential features” of the
real physical system. How can one know if models such as the FDSM or the macroscopic-
microscopic method as implemented in the FRDM retain essential features? There are
several approaches that should be pursued in parallel. The models must be used in a large
number of calculations in a consistent manner to test the models and to give experience
with the models. One should use general, model-independent arguments to analyze and
judge the models. For example, are the constants few enough and of a type that can be
reliably determined from available data points? Do the models correctly predict new data
that become available. And, the model features should be critically studied and challenged
by the scientific community. It is from the interplay of such activities that useful models
will evolve. It is in this spirit we offer our criticism of the FDSM and the mass formulas
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derived from it. The latter appear in two versions [1,2,6] of which we are mainly going to
discuss version II presented in Refs. [1,6], which the authors of the FDSM papers claim to
be the superior one through statements like

• . . . “version II is able to produce an excellent fit of 332 nuclei with a better rms error
of 0.22 MeV (vs the 0.34 MeV of version I) and parameters that are fewer in number”
. . .

• “Thus we have reduced the number of adjustable parameters in the FDSM-Strutinsky
mass formula from 16 in version I to 13 in version II.”

Here we comment on the above statements and on some other aspects of the FDSM model.
Specifically, our discussion will address the following points:

1. We show that the number of adjustable constants is grossly misrepresented; it is much
larger than 13.

2. The Strutinsky-like shell-correction method used in the FDSM work is unphysical. It
is still plagued by many of the same deficiencies as occur when the nuclear energy is
calculated as a sum of single-particle energies; deficiencies that Strutinsky removed
with his method [8,9].

3. It is rather trivial to achieve an error of about 0.22 MeV in a fit of a multi-parameter
expression to a limited region such as the “actinide” region the authors consider. Such
results are therefore of no physical significance, they are simply a parameterization of
the data.

4. Since octupole interactions are not considered in the FDSM model one would expect
larger errors in the FDSM masses where octupole deformations are important. Such
errors do not occur. This observation demonstrates that the results of the FDSM
model lack important physical features.

To be able to elaborate on the above points we have to outline those features of the
FDSM that are necessary for our discussion. However, we shall start with a brief discussion
of the macroscopic-microscopic method used in the FRDM and its application to nuclear
mass calculations.

2 The macroscopic-microscopic method

Shortly after the advent of the deformed single-particle models in the mid fifties [10], the
energy of a nucleus as a function of deformation was often calculated as a sum of three
contributions: a sum of the energies of occupied single-particle levels, a Coulomb energy,
and a pairing energy [11–13]. The shape of the nucleus in its ground state configuration
was obtained by minimizing the energy with respect to deformation.

Although the above method was used for calculating the nuclear potential energy versus
deformation in the vicinity of the ground state, it was observed at the time that it was in
principle incorrect to relate the total energy of the nucleus to the sum of single-particle level
energies. However, the approach was used because it worked in practice.

After the initial successful applications of the above method to calculations of the poten-
tial energy in the vicinity of the ground state, attempts were made to apply the procedure
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to distortions somewhat beyond the ground state. However, here the method failed catas-
trophically.

At this time, no global nuclear mass calculations based on microscopic models had been
made. However, global mass calculations based on liquid-drop models were carried out, for
example by ref. [14]. In these calculations the mass was obtained as a sum of a macroscopic
term plus a microscopic correction obtained from a postulated, parameterized expression.
It was not known if single-particle models could at all be utilized to obtain the microscopic
corrections.

2.1 The conventional Strutinsky shell-correction method

It was Strutinsky [8,9] who simultaneously resolved the difficulties that were associated with
using sums of single-particle level energies and proposed a method for obtaining microscopic
shell and pairing corrections from calculated single-particle energies of both spherical and
deformed nuclei. Strutinsky observed that the sum of single-particle level energies is of-
ten very large, in heavy nuclei much more than 1000 MeV in a Nilsson modified-oscillator
model, but that the change with deformation in this sum is often only a few MeV, that is a
few parts in one thousand. Since the energy of the nucleus is certainly not correctly given
to such an accuracy by the sum of single-particle level energies another method had to be
found. Strutinsky observed that the stability of the nucleus was clearly correlated with the
magnitude of the gaps in the single-particle levels, or more precisely to the level density,
close to the Fermi surface. He therefore proposed that one uses a macroscopic-microscopic
method to calculate the nuclear potential energy of deformation in which the microscopic
correction is obtained as a sum of calculated single-particle level energies minus the energy
from a smoothed-out level spectrum occupied with the same number of particles. The cru-
cial point in Strutinsky’s method is that:

the smoothed-out level spectrum is obtained from the calculated single-particle levels them-
selves.

Thus, the smooth level density is generated from the sharp, delta-function single-particle
level density by folding with a Gaussian so that the new level density is a sum of Gaussians,
each of which is centered around an original level. Because the large systematic errors that
are present in the sum of the single-particle level energies will also be present in the Gaussian
level spectrum they will be subtracted out when the microscopic correction is calculated as
the difference between these two terms.

2.2 Implementations of the macroscopic-microscopic method

In a macroscopic-microscopic model the nuclear energy, which is calculated as a function of
shape, proton number Z and neutron number N , is the sum of a macroscopic term and a
microscopic term. Thus the total nuclear potential energy can be written as

Epot(Z,N, shape) = Emacr(Z,N, shape) +Emicr(Z,N, shape) (1)

where the microscopic term in addition to the Strutinsky shell-correction energy also con-
tains a pairing-energy contribution.

After Strutinsky had proposed his method, several groups applied it to a large number
of nuclear-structure problems. The calculations could differ in the choice of macroscopic
liquid-drop, microscopic single-particle, and microscopic pairing models. Several choices
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exist for all of these models. However, common aspects of these calculations are that a
large number of nuclear-structure properties are described with relatively few constants
from systems as light as 16O to the heaviest elements.

The first step in a macroscopic-microscopic calculation is to select a nuclear shape of
interest. Next, the macroscopic energy is calculated for this shape, and the levels in a single-
particle potential with the same shape are determined. Then, the microscopic shell and
pairing corrections are calculated by use of Strutinsky’s method and the potential energy is
obtained as the sum of the macroscopic term and the shell-plus-pairing corrections. Finally,
the ground state mass is determined by minimizing the potential energy with respect to
deformation, that is the calculation is carried out for a grid of deformation points and the
minimum energy on this grid is determined.

Apart from the ground-state mass a large number of nuclear-structure quantities may
be determined without the introduction of any additional constants. Examples of such
quantities are the quadrupole moment and higher moments of the ground-state shape, the
fission-barrier saddle points and secondary minima, the energy of shape-isomeric states and
band-head energies.

2.3 The FRDM model

The macroscopic-microscopic FRDM (1992) model is the latest version of the “Möller-Nix
mass model” [5]. It is completely defined in Ref. [5], where a well-defined enumeration of all
the constants of the model is also made. We therefore refer to that publication for a complete
discussion of the model. However, in the FDSM (1992) paper [1] frequent references are
made to the FRDM in its 1988 version. To be able to comment on the discussion in [1] we
enumerate in the next section the constants in the FRDM in its 1988 form, which in terms
of model constants and other aspects differs only slightly from the FRDM (1992).

2.4 Constants of the FRDM model

It is always of interest to have a clear picture of exactly what constants enter a model.
Naturally, anyone who sets out to verify a calculation by others or uses a model for new
applications needs a complete specification of the model, for which a full account of the
model constants and their values is an essential part. Also, when different models are
compared it is highly valuable to fully understand exactly what constants enter the models.
Unfortunately, discussions of model constants are often incomplete, misleading, and/or
erroneous. For example, in Table A of Ref. [4] the number of constants of the mass model
of Spanier and Johansson [15] is listed as 12. However, in Table A in the article [15] by
Spanier and Johansson the authors themselves list 30 constants plus 5 magic numbers that
are not calculated within the mass model and must therefore be considered constants, for
a total of at least 35 constants.

We specify in Table 1 all the constants that enter the 1988 version of the FRDM model,
rather than just those that in the final step are adjusted to experimental data by a least-
squares procedure. We also include fundamental constants like the electronic charge and
Planck’s constant.

The discussions in Refs. [5,7] allows us to enumerate the constants in the FRDM model
in Table 1. From this list we see that the macroscopic-microscopic method requires relatively
few constants. One feature of the model gives rise to a small complication when counting
the number of constants. Droplet-model constants occur also in the determination of the
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Table 1: Constants in the FRDM (1988). The third column gives the number of constants ad-

justed to nuclear masses or mass-like quantities such as odd-even mass differences or fission-barrier

heights. The fourth column gives the number of constants determined from other considerations.

Appropriate numerical values of the macroscopic constants are given in [7] and of the microscopic

constants in [5].
ySee the discussion of the droplet-model constants in the text.

Constants Comment Mass-like Other

MH, Mn, e
2 Macroscopic fundamental constants 0 3

ael, r0, rp, Macroscopic constants from considerations 0 6
a, aden, K other than mass-like data

L, a3, r, s, t, h Macroscopic constants obtained 6 0
in prior adjustments to mass-like data

a1, a2, J , Q, a0, W Macroscopic constants determined by 9 0
C, γ, ca current least-squares adjustments

h̄c, mnuc Microscopic fundamental constants 0 2

Vs, Va, Aden, Bden, Ccur, Microscopic constants 0 10
kp, lp, kn, ln, apot

a1, a2, J , K, L, Q Droplet-model constants that enter the single- 3y 0y

particle potential

Subtotals 18 21

Total 39

single-particle potential. However, the six droplet-model constants used in the microscopic
expressions are obtained from four primary constants [16], one of which is the nuclear radius
constant r0. Since this constant has the same value as we use in our macroscopic model
only three remain that could be considered as additional FRDM constants. Alternatively
we could in principle employ an iterative procedure and obtain the same values for the
macroscopic and microscopic droplet-model constants. In that case the total number of
FRDM constants would be 36 and the number of constants adjusted to mass-like quantities
15.

3 Fermion dynamical symmetry model mass formula

3.1 Model features and constants

Here we present the principal terms that enter in the FDSM Strutinsky atomic mass formula.
Our purpose with the brief outline is only that we later be able to identify where in the mass
model various constants enter. For a more extensive presentation we refer to the original
work [1].
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In the FDSM the nuclear mass is given by MFDSM(Z,N) with

MFDSM(Z,N) = MS
lq +M s.p.

sh + V pair
sh + < VFDSM > (2)

where MS
lq is the spherical liquid-drop energy and the remaining three terms account for

the shell-plus-pairing corrections.

3.1.1 Spherical liquid-drop model

Only the spherical liquid-drop energy is needed in the FDSMmodel, since other terms are as-
sumed to generate the macroscopic deformation effects that in the macroscopic-microscopic
finite-range liquid-drop model are described by a deformed macroscopic energy expression.
For generality we give the expression for the deformed case and then specialize to the spher-
ical case. MS

lq of the FDSM model is identical to the macroscopic FRLDM energy [7] in its
spherical limit, Thus

MS
lq = MHZ +MnN

− av
(

1 − κvI
2
)

A

+ as
(

1− κsI
2
)

B1A
2/3

+ c0A
0

+ c1
Z2

A1/3
B3

− c4
Z4/3

A1/3

+ f(kfrp)
Z2

A

− ca(N − Z)

+ W

(

|I|+

{

1/A , Z and N odd and equal
0 , otherwise

)

+



































+ ∆p +∆n − δnp , Z and N odd

+ ∆p , Z odd and N even

+ ∆n , Z even and N odd

+ 0 , Z and N even

− aelZ
2.39 (3)
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with B1 and B3 given by their values in the spherical limit as given by Eq. (13) below. The
average neutron pairing gap ∆n and the average proton pairing gap ∆p are given by [17,18]

∆n =
rBs

N1/3
e
−sI−tI2 (4)

and

∆p =
rBs

Z1/3
e
+sI−tI2 (5)

The average neutron-proton interaction energy δnp is given by [17,18]

δnp =
h

BsA2/3
(6)

In the above expressions the quantities c1 and c4 are defined in terms of the electronic
charge e and the nuclear-radius constant r0 by

c1 =
3

5

e2

r0

c4 = c1
5

4

(

3

2π

)2/3

(7)

The proton form factor f is given by

f(kfrp) = −
1

8

rp
2e2

r03

[

145

48
−

327

2880
(kfrp)

2 +
1527

1209600
(kfrp)

4

]

(8)

where the Fermi wave number is

kf =

(

9πZ

4A

)1/3 1

r0
(9)

The relative neutron excess I is

I =
N − Z

N + Z
(10)

The relative surface energy Bs, which is the ratio of the surface area of the nucleus at
the actual shape to the surface area of the nucleus at the spherical shape, is given by

Bs =
A−2/3

4πr02

∫

S
dS (11)

which in the spherical limit is 1. The quantity B1 represents the relative generalized surface
or nuclear energy in a model that accounts for the effect of the finite range of the nuclear
force and B3 is the relative Coulomb energy, including diffuseness corrections to all orders.
For spherical shapes one can calculate the quantities B1 and B3 analytically. With

x0 =
r0A

1/3

a
and y0 =

r0A
1/3

aden
(12)

one obtains

B1 = 1−
3

x02
+ (1 + x0)

(

2 +
3

x0
+

3

x02

)

e−2x0

B3 = 1−
5

y02

[

1 −
15

8y0
+

21

8y03
−

3

4

(

1 +
9

2y0
+

7

y02
+

7

2y03

)

e−2y0

]

(13)
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The expression B3 for the relative Coulomb energy yields the energy for a homoge-
neously charged, diffuse-surface nucleus to all orders in the diffuseness parameter aden. The
constants in front of B1 and B3 have been chosen so that B1 and B3 are 1 for a sphere in
the limit in which the range a and diffuseness aden go to zero, in analogy with the definition
of the quantities Bs and BC in the standard liquid-drop model.

3.1.2 Values of the constants of spherical liquid-drop energy

The constants appearing in the expression for the FRLDM macroscopic model fall into three
categories [19,20]. The first category, which represents constants that were taken form pre-
vious work with no adjustment whatsoever, includes [18–20]

MH = 7.289034 MeV hydrogen-atom mass excess
Mn = 8.071431 MeV neutron mass excess
e2 = 1.4399764 MeV fm electronic charge squared

aden = 0.99/21/2 fm range of Yukawa function used to
generate nuclear charge distribution

ael = 1.433 × 10−5 MeV electronic-binding constant
r = 5.72 MeV pre-exponential pairing constant
s = 0.118 linear exponential pairing constant
t = 8.12 quadratic exponential pairing constant
h = 6.82 MeV neutron-proton interaction constant
rp = 0.80 fm proton root-mean-square radius

The second category, representing those constants whose values were determined from
considerations other than nuclear ground-state masses, includes [19,20]

r0 = 1.16 fm nuclear-radius constant
a = 0.68 fm range of Yukawa-plus-exponential potential
as = 21.13 MeV surface-energy constant
κs = 2.3 surface-asymmetry constant

The third category represents five constants whose values are determined from a least-
squares adjustment to nuclear ground-state masses by ref. [7]. Their values are

av = 16.000 MeV volume-energy constant
κv = 1.911 volume-asymmetry constant
W = 35 MeV Wigner constant
c0 = 5.8 MeV A0 constant
ca = 0.145 MeV charge-asymmetry constant

3.1.3 Spherical shell correction

The spherical shell correction Ms.p.
sh , term two in Eq. (2), is given by
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M s.p.
sh =

= M s.p.
sh (Z) +Ms.p.

sh (N)

=
Z
∑

i=83

επi n
π
i − [EFG(Z) −EFG(82)] + npεp +

N
∑

i=127

ενi n
ν
i − [EFG(N)−EFG(126)] + nnεn (14)

where επi and ενi are the proton and neutron single-particle energies and where, in this case,
nπ
i = 1 and nν

i = 1. Furthermore, EFG(n) represents the Fermi-gas energy for n nucleons:

EFG(Z) =
3Z5/3Cp

5Rp
2

EFG(N) =
3N5/3Cn

5Rn
2

(15)

and

Rn,p = r0A
1/3

[

1± I

(1 − 3ǫ)(1 ± δ)

]1/3

(16)

with

δ̄ =

(

I +
3

16

c1
Q

Z

A2/3

)

/

(

1 +
9

4

J

Q

1

A1/3

)

(17)

and

ǭ =

(

−2a2
1

A1/3
+ Lδ̄2 + c1

Z2

A4/3

)

/K (18)

The calculation of the spherical shell corrections uses a set of spherical single-particle
levels. Thus, these levels and their associated l and j quantum numbers, which are needed
to provide the parity and degeneracy of the levels constitute constants of the model, as do
the spherical magic numbers in the beginning and end of the region. The proton magic
numbers are 82 and 126, and the neutron magic numbers are 126 and 184. Between these
magic numbers there are 6 spherical proton and 7 spherical neutron levels. Some constants
of the model depend on the particular set of singe-particle levels used. We give below
the set of constants appropriate for the Woods-Saxon single-particle level scheme, used in
Refs. [1,6].

The quantities εp and εn in Eq. (14) represent approximately the differences between
the Fermi-gas and the more exact single-particle level schemes represented by the energies
επi and ενi . The number of valence nucleons np and nn are, obviously np = Z − 82 and
nn = N − 126. The following definition was chosen for εp and εn:

εp =

(

3

5
835/3 −

3

5
825/3

)

Cp/Rp
2 + ep

εn =

(

3

5
1275/3 −

3

5
1265/3

)

Cn/Rn
2 + en (19)
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The quantities ep and en are determined by requiring the maximum cancellations in Eq. (14),

or equivalently by minimizing
∑126

Z=83

[

M s.p.
sh (Z)

]2
and

∑184
N=127

[

M s.p.
sh (N)

]2
.

The various terms entering in Eq. (14) are shown in Fig. (1) as functions of the proton
number for neutron number N = 126. The solid curve represents the Fermi gas energy
EFG(Z) − EFG(82) with EFG(Z) defined by Eq. (15) and the short-dashed curve the total
sum of single-particle energies

∑Z
i=83 ε

π
i n

π
i + npεp. The difference between the two curves

defines the spherical shell-correction energy Ms.p.
sh The contribution from the first term

in the single-particle energy is small, corresponding to the long-dashed curve. The main
contribution to the sum of single-particle energies comes from npεp, with εp defined in
Eq. (19). For ep = 0 this term gives a contribution to the energy corresponding to the
dot-dashed curve in Fig. (1). Adding to this curve the sum of single-particle energies
given by the long-dashed curve, results in an energy which is consistently lower than the
Fermi-gas energy given by the solid curve. This would result in a spherical shell-correction
energy which is negative for all proton numbers. To avoid this, a non-zero value for ep
is introduced, resulting in an additional contribution to the total sum of single-particle
energies, npep, shown by the dotted line. Since both the dotted and the dot-dashed curves
are smooth functions of the proton number, the only true shell correction must be contained
in the long-dashed curve. The other two terms are only introduced to have the total sum
of single-particle energies (the short-dashed curve, corresponding to the sum of the long-
dashed, dotted and dot-dashed curves) fluctuate around the Fermi gas energy (the solid
curve). However, the difference between the short-dashed and solid curves, defined to
represent the ”spherical shell-correction energy”, does not correspond to what is normally
called the shell-correction energy. This will be shown in sec. 4.2 below.

3.1.4 Values of the constants of the spherical shell correction

The constants of the spherical shell correction are

J = 38.2 MeV symmetry-energy constant
L = 100.0 MeV density-energy constant
c1 = 0.7403 MeV Coulomb-energy constant
K = 300 MeV nuclear compressibility constant
a2 = 20.85 MeV surface-energy constant
Q = 17.7 MeV effective surface-stiffness constant
Cp = 72 MeV proton Fermi-energy constant
Cn = 71 MeV neutron Fermi-energy constant
ep = 3.212 MeV proton scaling constant
en = 3.477 MeV neutron scaling constant

The spherical Woods-Saxon proton and neutron single-particle levels and quantum num-
bers used in the FDSM are shown in Table 2.

3.1.5 Spherical pairing correction

The spherical pairing correction V pair
sh , term three in Eq. (2), is given by

V pair
sh = [V pair

π (BCS)− V pair
π (deg)] + [V pair

ν (BCS)− V pair
ν (deg)] (20)

In Eq. (20) V pair
σ (BCS) is the pairing energy obtained from a given single-particle level

scheme by solving the standard BCS equations (σ = π, ν). The pairing energy Vpair
σ (deg)
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Table 2: Woods-Saxon single-particle level energies and quantum numbers used in the
FDSM.

Protons Neutrons

Energy (MeV) l j Energy (MeV) l j

5.099 p 1/2 3.808 d 3/2
3.880 f 5/2 3,452 s 1/2
3.850 p 3/2 2.950 g 7/2
1.684 i 13/2 2.355 d 5/2
0.921 f 7/2 1.201 j 15/2
0.000 h 9/2 0.665 i 11/2

0.000 g 9/2

for a degenerate level scheme may be determined analytically:

V pair
σ (deg) = GσN

σ(Ωσ −Nσ +Nσ/Ωσ) (σ = π, ν) (21)

The symbol Ω denotes the shell degeneracy. In the presentation of the FDSM model it is
stated that the BCS approximation is used here only to calculate the corrections due to the
spherical single-particle splitting and that the principle part of the pairing in the FDSM is
treated below as a two-body interaction.

It should be observed that the BCS pairing energy, Vpair
π (BCS) does not fluctuate around

the pairing energy for the degenerate level scheme, Vpair
π (deg). Both energies are negative,

but for nearly all nuclei V pair
π (deg) has a much larger negative value than Vpair

π (BCS), re-
sulting in positive values of V pair

sh for the large majority of nuclei. The situation is illustrated

for the N = 126 isotones in Fig. 2. The downsloping trend of Vpair
sh is the result of having

included a term −G
∑

i v
4
i in the pairing energy.

3.1.6 Values of the constants of the spherical pairing correction

The constants of the spherical pairing correction are, for the case of Woods-Saxon levels:

Gpair
π = −0.094 MeV Pairing strength constant for protons, WS levels

Gpair
ν = −0.052 MeV Pairing strength constant for neutrons, WS levels
Gπ = −0.047 MeV Pairing strength constant for protons, deg. levels
Gν = −0.023 MeV Pairing strength constant for neutrons, deg. levels

3.1.7 The FDSM shell-correction term < VFDSM >

In ref. [1] it is shown that in the symmetry limits

< VFDSM >= aα + bαNp + cαNp
2 + dαNn + eαNn

2 + fαNpNn

+Bπν
2 < Vπν

Q >α

+Gπ
2 < ∆Cπ

Sp6 >α +Gν
2 < ∆Cν

Sp6 >α
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+ Gπ
0 < ∆Cπ

SU2 >α +Gν
0 < ∆Cν

SU2 >α

+ (Gπ
0 −Gπ

2 ) < ∆Cπ
SU2 >α +(Gν

0 −Gν
2) < ∆Cν

SU2 >α

+ (Bπ
2 −Gπ

2 ) < ∆Cπ
SU3 >α +(Bν

2 −Gν
2) < ∆Cν

SU3 >α (α = SU2,SU3) (22)

In Eq. (22) Np and Nn are the pair numbers of valence protons and neutrons respectively;
the expectation values of the operators inside <> are discussed in ref. [1]. The remaining
quantities are constants whose values are given below.

3.1.8 Values of the constants of < VFDSM >

The constants of the FDSM shell correction fall into two categories. The constants of the
first category, which represents the non-pairing part, were determined directly from a least-
squares adjustment to nuclear masses. For (α = SU2) the constant values are:

aα = −13.7500 MeV
bα = −4.5720 MeV
cα = 0.4293 MeV
dα = −4.8890 MeV
eα = 0.3306 MeV
fα = −0.2915 MeV

Bπν
2 = −0.0912 MeV

and for (α = SU3):

aα = −5.5700 MeV
bα = −5.7900 MeV
cα = 0.3713 MeV
dα = −6.8060 MeV
eα = 0.3587 MeV
fα = −0.1095 MeV

Bπν
2 = −0.1095 MeV

The second category consists of constants that enter into the pairing part of < VFDSM >
and were determined from adjustments to odd-even mass differences:

Gπ
0 = −0.142 MeV

Gπ
2 = −0.064 MeV

Bπ
2 ≈ 0 MeV

Gν
0 = −0.082 MeV

Gν
2 = −0.044 MeV

Bν
2 ≈ 0 MeV

Gπ
0 = −0.200 MeV

Gν
2 = −0.150 MeV
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Table 3: Constants of the FDSM. Constants that have not been obtained from adjustments
to mass-like data, such as nuclear masses, fission barriers or odd-even mass differences are
enclosed in brackets. The number in () in the comment column refers to the more extensive
comments in the text. The third column gives the number of constants adjusted to nuclear
masses or mass-like quantities such as odd-even mass differences. The fourth column gives
the number of constants determined from other considerations.
†These constants are determined from a least-squares minimization and are therefore not
counted as constants of the model.
‡The number given is appropriate when experimental level energies are used. When Woods-
Saxon levels are used the 39 level energies and spins are determined from an underlying
model whose number of constants is smaller, perhaps about 15, as in the FRDM microscopic
model. Because the lowest single-particle level is renormalized to 0.0 for both neutrons and
protons in the FDSM we reduce the number of level energies and spins from 39 to 37 in the
table.

Constants Comment Mass-like Other

(82),(126),(126),(184) Spherical magic numbers (1) 0 4‡

J,L, (c1), (K), a2, Q, Fermi-gas par. (2) 4 4
e†p, e

†
p, (Cp),(Cn)

Gpair
π , Gpair

ν , G†
π, G

†
ν Spherical pairing constants (3) 2 0

(MH),(Mn),av, as,(aden), MS
lq spher. liq. drop par. (4) 8 7

κv, κs, c0,(a),ca,W ,
(ael),h,(r0),(rp)

Gπ
0 , G

ν
0 , G

π
2 , G

ν
2 ,B

π
2 ,B

ν
2 VFDSM pairing par., norm. (5) 6 0

Gπ
0 ,G

ν
0 VFDSM pairing par., abnorm. (6) 2 0

aα, bα, cα, dα, eα, fα VFDSM par., α = SU2 (7) 6 0

aα, bα, cα, dα, eα, fα VFDSM par., α = SU3 (8) 6 0

Bπν
2 VFDSM par. (9) 1 0

(επi ),(ε
ν
i ) 13 spherical levels, assoc. l and j (10) 0 37‡

Subtotals 35 54‡

Total 87‡

3.2 Constants of the FDSM

The constants that enter in the FDSM are listed in Table 3. By constants we mean numbers
used in the mass formula, that cannot be (or have not been) derived from the FDSM model
itself. Instead, they are taken from other sources or obtained from adjustments to data,
including nuclear masses. In addition to the very brief comments in the table one should
observe the following:
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1. The magic numbers used in the FDSM have been obtained from a single-particle
model.

2. Most of the Fermi-gas constants are droplet model constants. Most of the constants
of the droplet model [21,22] are determined from least squares adjustment to masses
and fission barriers.

3. The spherical pairing constants are deduced from odd-even mass differences.

4. The spherical liquid drop constants have been taken from the work of Möller and
Nix [23]. These authors obtained the constants from adjustments to masses, fission
barriers and other considerations.

5. These constants enter the pairing part of the FDSM shell-correction term VFDSM and
have been determined from considerations of odd-even mass differences. The constants
are valid if the odd nucleon is in a normal parity level.

6. These constants enter the pairing part of the FDSM shell-correction term VFDSM and
have been determined from considerations of odd-even mass differences. The constants
are valid if the odd nucleon is in an abnormal parity level.

7. Constants of the FDSM shell-correction term VFDSM for α = SU2. The constants
have been determined from adjustments to experimental nuclear masses.

8. Constants of the FDSM shell-correction term VFDSM for α = SU3. The constants
have been determined from adjustments to experimental nuclear masses.

9. Constant of the FDSM shell-correction term VFDSM. The constant has been deter-
mined from adjustments to experimental nuclear masses.

10. Spherical single-particle level energies with associated spins and angular momentum
values have to be available as input to the FDSM mass calculation. This corresponds
to 3 × 13 = 39 constants.

The above list of the constants should be compared to the claim of the authors of the
FDSM paper:

“Thus we have reduced the number of adjustable parameters in the FDSM-Strutinsky
mass formula from 16 in version I to 13 in version II.”

This statement is only correct in the sense that in the final step of parameter adjustment
only 13 constants (corresponding to (7), (8) and (9) in Table 3) were varied. However, at that
point the authors had already adjusted the value of the constants on lines (3), (5) and (6)
in Table 3 and still other constants are fitted to mass-like data, although the authors of the
FDSM paper did not themselves specifically adjust those values for their mass calculations
but took them from other sources. Finally, it should be mentioned that the number of
mass-related constants (as well as the total number of constants) is considerably smaller
in version I of the FDSM mass formula. In version I of the FDSM there are in total 19
constants of which 7 are SU(2) constants, 9 are SU(3) constants and three are common
constants for the two symmetries, namely the mass of 208Pb, the proton mass and the
neutron mass. The 7 SU(2) and 9 SU)3) constants are all fitted in the FDSM version I.
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4 An evaluation of the FDSM mass formula

4.1 “Experimental” data set used in adjustment

The FDSM discussed here has been applied only to the calculation of actinide masses. The
authors of Ref. [1] state:

“These 13 parameters are determined by adjustment to 332 known actinide-region masses.”

Since there were only 246 measured masses available for Z ≥ 82, in the latest compila-
tion at about the time the FDSM constants were fitted, namely in the 1989 Audi interim
table [24], it is clear that the authors have made the mistake of including masses given by
“Wapstra systematics”. These are masses that have not been measured. Instead, they have
been calculated by Wapstra [25] by means of extrapolation from known masses. Thus, the
authors have, partially, adjusted their model to another model. We have investigated the
error associated with the “Wapstra systematics” model. From a 1977 mass table [26,27] we
have selected the masses given by the Wapstra systematics for which real measurements were
given in the 1989 Audi interim table [24]. There were in all 253 such masses in all regions of
nuclei. These 253 new measurements were usually close to previously known masses. The
rms error between the systematics masses and these new masses was 0.45 MeV.

4.2 FDSM “Strutinsky-like shell correction”

The method used in the FDSM for calculating the “Strutinsky-like shell correction” is
definitely not Strutinsky-like. In fact, it is contrary to all the ideas introduced by Strutinsky
and is actually more similar to the pre-Strutinsky method of just summing single-particle
level energies. The method is therefore fraught with all the problems associated with that,
now abandoned, method.

In order to make a physical interpretation of the ”Strutinsky-like” shell correction Ms.p.
sh

used in the FDSM we rewrite Eq. (14) in the following way:

M s.p.
sh = {

Z
∑

i=83

(επi + εp)n
π
i +

82
∑

i=1

(επi + εp)n
π
i −Esmo(Z)} + {Esmo(Z)−EFG(Z)}

− {Esmo(82) −EFG(82)} − {
82
∑

i=1

(επi + εp)n
π
i −Esmo(82)}

+ corresponding terms for neutrons (23)

We have here introduced the true smooth Strutinsky energy Esmo, which has to be calculated
from the full set of single-particle energies through the Strutinsky smearing procedure. In
the FDSM mass formula, these energies are only defined for 82 < Z < 126 (and for neutrons
for 126 < N < 184), but this has no consequence for the the above formula, since each term
which depends on the single-particle energies outside these intervals and are added in the
formula is also subtracted out. Therefore, the expression for Ms.p.

sh given in Eqs. (14) and
(23) are identical. In Eq. (23), the various terms have been ordered into groups enclosed by
brackets. The first group of terms is identical to the true Strutinsky shell-correction energy
Eshell(Z), provided that Esmo(Z) is calculated from the renormalized single-particle energies
επi + εp. The value of εp does then not effect Eshell(Z), since it will cancel out exactly. The
second group of terms gives the difference between the smooth Strutinsky energy and the
Fermi gas energy for proton number Z. From now on we will use the notation Esmo−FG(Z)
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for this term. The third group of terms is is defined in the same way as the second group
but for proton number Z = 82 and can therefore be written as Esmo−FG(82). Finally, the
fourth group of terms is identical to the true Strutinsky shell-correction energy for proton
number 82, i.e. Eshell(82). We can now rewrite Eq. (14) as

M s.p.
sh = Eπ

shell(Z) +Eπ
smo−FG(Z)−Eπ

smo−FG(82) −Eπ
shell(82)

+Eν
shell(N) +Eν

smo−FG(N) −Eν
smo−FG(126) −Eν

shell(126) (24)

where we have written out explicitly also the neutron terms. By adding the proton and
neutron terms we finally get

M s.p.
sh = Eshell(Z,N) +Esmo−FG(Z,N) −Esmo−FG(

208Pb) −Eshell(
208Pb) (25)

We can now make a precise interpretation of the ”spherical Strutinsky-like shell-correction
energy”. It is identical to the normal Strutinsky shell energy to which has been added
the energy difference between the smooth Strutinsky energy and the Fermi gas energy, the
whole expression normalized to zero for 208Pb. In Fig. 3 the “spherical Strutinsky-like
shell-correction energy” has been split up into these two components. It can then be seen
that the normal Strutinsky shell-correction energy and the component corresponding to the
energy difference between the smooth Strutinsky energy and the Fermi gas energy are of
the same magnitude.

It is very satisfactory to observe that Ms.p.
sh indeed contains the true Strutinsky shell-

correction energy, Eshell(Z,N). On the other hand it is very disturbing to see that also
Esmo−FG(Z,N) is contained in Ms.p.

sh , since this term is the difference between two macro-
scopic energies, namely the smooth Strutinsky energy and the Fermi gas energy, and there-
fore macroscopic in character. It will therefore vary smoothly with N and Z and not have
the oscillating behavior that we associate with a shell energy. Furthermore, the term will
become very large at some distance from 208Pb, the nucleus for which it is renormalized
to zero by the subtraction of Esmo−FG(

208Pb). Even more serious is that it contains the
smooth Strutinsky energy, which is nothing but the smoothed out version of the unphysical
sum of single-particle energies. Therefore, Ms.p.

sh has all the deficiencies associated with the
pre-Strutinsky era sums of single-particle energies. This can not be cured by the subtraction
of the droplet-like, and therefore in principle physically correct, Fermi gas energy. On the
contrary, by doing so, it is guaranteed that parts of the smooth Strutinsky energy that have
an incorrect mass number dependence remain in Ms.p.

sh . However, the FDSM mass formula
offers other terms to compensate for this mistake, as we will see later. Finally, to renormalize
the shell energy to zero for 208Pb seems very strange, since this is one of the most strongly
bound nuclei and therefore traditionally associated with a large negative shell energy, i.e.
it has a much lower energy than predicted by the liquid drop formula. However, also in this
case, the FDSM mass formula offers means for compensation as we will discuss in section 4.3.

4.3 FDSM masses for spherical nuclei

It is now possible to make a direct comparison between the macroscopic-microscopic model
and the FDSM for spherical nuclei. In the FDSM the nuclear mass is given by Eq. (2). By
using the expression for Ms.p.

sh given in Eq. (25), Eq. (2) can be rewritten as

MFDSM(Z,N) = MS
lq +Eshell(Z,N) + V pair

sh (Z,N) +Esmo−FG(Z,N)

−Eshell(
208Pb)−Esmo−FG(

208Pb)+ < VFDSM > (26)
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The corresponding expression in the macroscopic-microscopic model is

Mmm(Z,N) = MS
lq(Z,N) +Eshell(Z,N) + V pair

mm (Z,N) (27)

Provided that the same macroscopic energy and the same single-particle energies are used
in both models, MS

lq and Eshell(Z,N) are identical in Eqs. (26) and (27).
By introducing

δEdiff (Z,N) = MFDSM(Z,N) −Mmm(Z,N) (28)

we get by subtracting Eq. (27) from Eq. (26) and rearranging the terms

< VFDSM >= Eshell(
208Pb) +Esmo−FG(

208Pb) −Esmo−FG(Z,N)

+V pair
mm (Z,N) − V pair

sh (Z,N) + δEdiff(Z,N) (29)

Provided that δEdiff (Z,N) is small enough to be neglected, as it in fact is for most nuclei
included in the fit, it is straightforward to interpret the meaning of < VFDSM >. It consists
of two terms related to the nucleus 208Pb, namely the true Strutinsky shell energy and the
difference between the smooth Strutinsky energy and the Fermi gas energy. From this is
subtracted two terms related to the nucleus under consideration: the difference between
the smooth Strutinsky energy and the Fermi gas energy and the difference between the
spherical pairing correction term of the FDSM mass formula and the pairing correction of
the macroscopic-microscopic model, taken at the actual deformation. This interpretation is
correct to the order of one MeV, which is the size of δEdiff(Z,N).

The implication of Eq. (26) is very interesting. Since the nuclear mass is already given
to a very good approximation by the three first terms MS

lq + Eshell(Z,N) + V pair
sh (Z,N) of

Eq. (26), the sum of the remaining terms must add up to only a couple of MeV. However,
for nuclei at some distance from 208Pb, the expression Esmo−FG(Z,N) − Eshell(

208Pb) −
Esmo−FG(

208Pb) constituting terms four to six of Eq. (26) is much larger than that. Correct
masses can only be obtained if the terms Esmo−FG(Z,N)−Eshell(

208Pb)−Esmo−FG(
208Pb)

are nearly exactly canceled out by < VFDSM > in Eq. (26). That this near cancellation
occurs is more clearly seen in the expression for < VFDSM > given in Eq. (29). In addition
to the three terms already mentioned, < VFDSM > contains three more terms. The first two
are V pair

mm (Z,N) − V pair
sh (Z,N), implying that V pair

sh (Z,N) in Eq. (26) de facto is replaced
by the pairing energy of the macroscopic-microscopic model. This replacement is essential,
since V pair

mm (Z,N) − V pair
sh (Z,N) may amount to several MeV, as illustrated in Fig. 4. The

main contribution to the discrepancy comes from Vpair
π (deg), cf. Fig. 2. The only remaining

term in Eq. (29) is δEdiff(Z,N), which is typically of the order 1 MeV for nuclei with known
masses. It is the only FDSM-related term in which an improvement over the macroscopic-
microscopic model can be incorporated in the FDSM mass formula.

In the FDSM paper, < VFDSM > is characterized as the FDSM shell correction. Fur-
thermore, it is stated that it can be obtained by computing the expectation value of the
FDSM effective interaction. In reality this is not done, since this term is determined by
parameter adjustment to data. Eq. (29), however, leads to a totally different interpretation
of < VFDSM >. The bulk part of this term serves the single purpose of cancelling out the
inappropriate terms in the mass formula of Eq. (26). Its value depends crucially on the
microscopic model, mainly through Esmo, and on the Fermi gas model. Any change in the
choice of these models or their constant values will therefore alter the value of < VFDSM >.
Consequently, < VFDSM > is not reflecting properties of the FDSM model and its value
cannot be independently calculated from the FDSM effective interaction. In the FDSM
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mass formula it serves the mere purpose of providing a set of adjustable constants which
are used for fitting the ”experimental” masses.

In Fig. 5 < VFDSM > is plotted for the N = 126 isotones (the solid curve). According to
the predictions of Eq. (29) it should very closely follow the long-dashed curve, which shows
Eshell(

208Pb) + Esmo−FG(
208Pb) − Esmo−FG(Z,N) + V pair

mm (Z,N) − V pair
sh (Z,N). However

this is only true for proton numbers up to 91, which is the range in which the FDSM
constants have been fitted to masses for the N = 126 isotones. For larger proton numbers,
for which no masses are available, the two curves start to deviate. As Z approaches 126 the
discrepancies becomes very large.

For 208Pb Eq. (29) reduces to

< VFDSM >208Pb= Eshell(
208Pb) + V pair

mm (208Pb)− V pair
sh (208Pb) + δEdiff(

208Pb) (30)

For this nucleus the pairing terms are small and to the extent that the difference between
the two models can be neglected, < VFDSM >208Pb is simply the Strutinsky shell-correction
energy.

4.4 FDSM masses for deformed nuclei

For deformed nuclei, the total mass can be written as the mass of the nucleus at spherical
shape plus a correction due to deformation. This correction must lower the mass, since oth-
erwise the nucleus would be spherical. In the macroscopic-microscopic model the separation
into a deformation-independent part and a deformation-dependent part can be written

Mmm(β,Z,N) = Mlq(β,Z,N) +Eshell(β,Z,N) + V pair
mm (β,Z,N)

= MS
lq(Z,N) + [Mlq(β,Z,N) −MS

lq(Z,N)]

+ES
shell(Z,N) + [Eshell(β,Z,N) −ES

shell(Z,N)]

+V pair
mm (0, Z,N) + [V pair

mm (β,Z,N) − V pair
mm (0, Z,N)] (31)

Here β denotes a general non-spherical deformation, whereas a superscript S denotes spher-
ical shape. The pairing energy calculated at spherical shape is denoted Vpair

mm (0, Z,N). The
spherical terms are identical to those in Eq. (27), although the notation differs slightly.
The sum of the terms in square brackets gives the deformation energy Edef(β,Z,N). Equa-
tion (31) can them be simplified to

Mmm(β,Z,N) = MS
lq(Z,N) +ES

shell(Z,N) + V pair
mm (0, Z,N) +Edef(β,Z,N)

= MS
mm(Z,N) +Edef(β,Z,N) (32)

where MS
mm(Z,N) is the mass calculated for spherical shape.

The FDSM mass formula has the same form for spherical and deformed nuclei. Conse-
quently, in analogy with Eq. (29), we obtain < VFDSM > in the deformed case by subtracting
Eq. (32) from Eq. (26) and rearranging the terms, with the result

< VFDSM >= ES
shell(

208Pb) +Esmo−FG(
208Pb) −Esmo−FG(Z,N)

+V pair
mm (0, Z,N) − V pair

sh (Z,N) +Edef(β,Z,N) + δEdiff(Z,N) (33)

implying that the full deformation-dependent part of the nuclear mass is contained in
< VFDSM >, which is also what the authors of Ref. [1] claim is the case. Note that
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Eq. (33) is identical to Eq. (29), except for the inclusion of the deformation-dependent term
Edef(β,Z,N).

In most macroscopic-microscopic calculations, the energy is not divided as in Eq. (32),
but is instead split into a spherical liquid-drop energy and a so-called microscopic correction,
Ecorr(β,Z,N), which contains all shell, pairing and deformation effects. Thus

Mmm(β,Z,N) = MS
lq(Z,N) +Ecorr(β,Z,N) (34)

and therefore

Edef(β,Z,N) = Ecorr(β,Z,N) −ES
shell(Z,N) − V pair

mm (0, Z,N) (35)

By inserting this expresion for Edef(β,Z,N) in Eq. (33) we can express < VFDSM > in
terms of the more commonly used microscopic correction energy, which is the energy usually
plotted as potential-energy surfaces. We then get

< VFDSM >= ES
shell(

208Pb)−ES
shell(Z,N) +Esmo−FG(

208Pb) −Esmo−FG(Z,N)

−V pair
sh (Z,N) +Ecorr(β,Z,N) + δEdiff(Z,N) (36)

This expression differs from the one in Eq. (33) in that the spherical shell correction
ES

shell(Z,N) now appears explicitly instead of the spherical pairing energy Vpair
mm (0, Z,N).

The five first terms in Eq. (36) can be calculated independently of the FDSM since they
depend only on the spherical single-particle energies and on the Fermi-gas model. The
difference between the sum of < VFDSM > and these terms is Ecorr(β,Z,N) + δEdiff(Z,N).
In the region where the FDSM parameters were adjusted to nuclear masses δEdiff(Z,N)
is small. Thus, what is in the FRDM the microscopic correction to the spherical liquid-
drop energy, Ecorr(β,Z,N), is in the FDSM given solely by the polynomial parameter fit of
< VFDSM >. Such a description can hardly be considered a solid microscopic foundation of
a model.

4.5 A comparison between the FDSM versions I and II

Finally we shall make a brief comparison of version I and version II of the FDSM mass
formula. In version I [2] the nuclear mass was given by

MI = M(208Pb) + npMp + nnMn+ < HFDSM > (37)

In this equation < HFDSM > is the expectation value of the FDSM Hamiltonian. Its
value is given relative to the mass of 208Pb and it does not include the mass excess of
the additional np = Z − 82 protons and and nn = N − 126 neutrons, which are therefore
added explicitly together with the mass of 208Pb in Eq. (37). The expectation value of the
FDSM Hamiltonian, < HFDSM >, must not be confused with the FDSM shell correction
< VFDSM >. According to the FDSM paper [1], < HFDSM > incorporates the spherical
liquid drop energy and the spherical s.p. (and presumably also pairing) corrections, which
are not contained in < VFDSM >.

We now introduce the difference between the masses predicted by versions I and II as

δEI−II = MI −MII (38)

and subtract Eq. (37) from Eq. (2). This gives after rearrangement of the terms

< HFDSM > − < VFDSM >= MS
lq(Z,N) +Ms.p.

sh (Z,N) + V pair
sh (Z,N)

−M(208Pb) − npMp − nnMn + δEI−II(Z,N) (39)
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This expression simply verifies the difference between < HFDSM > and< VFDSM > described
above, provided that the spherical s. p. correction is defined as Ms.p.

sh (Z,N).
By introducing the proper expressions for Ms.p.

sh (Z,N) given by Eq. (25), np = Z − 82,
and nn = N − 126, we obtain for Eq. (39)

< HFDSM > − < VFDSM >= ES
shell(Z,N) + V pair

sh (Z,N) +MS
lq(Z,N)

−ES
shell(

208Pb) −Esmo−FG(
208Pb) +Esmo−FG(Z,N)

−M(208Pb)− (Z − 82)Mp − (N − 126)Mn + δEI−II(Z,N) (40)

in which the true spherical Strutinsky shell-correction energy, ES
shell(Z,N) appears explicitly

together with the undesirable terms that are present in Eq. (25). It should be observed that
these terms are introduced through < VFDSM > and not through < HFDSM >, which
therefore is physically more appealing. In spite of the undesirable terms, the expression for
< HFDSM > − < VFDSM > has some interesting properties. Since the predicted masses
are similar to within about 1 MeV for the two models, at least for nuclei with known
masses, we may for such nuclei neglect the term δEI−II(Z,N). All the other terms are
either constants or smooth functions of N and Z except ES

shell(Z,N) and V pair
sh (Z,N) but

they are all independent of the FDSM itself. The energy resulting from these terms does
therefore not depend on the fitted FDSM constants, nor on whether the SU2 or SU3 version
of the FDSM is used.

Since both < HFDSM > and < VFDSM > are described by polynomial expressions, also
the difference between the two terms is a polynomial expression, i.e. the left hand side of
eq. (95) is a polynomial expression. This implies that only if the right hand side of eq. (95),
with δEI−II(Z,N) = 0, can be written as a polynomial expression, can the two versions of
the FDSM mass formula give the same masses. As it turns out, this is not possible. Only
over a limited range in N and Z can it be approximated by a polynomial expression. As
a consequence, δEI−II(Z,N) = 0 will grow rapidly outside the local region of parameter
adjustment. That this actually is the case is shown in section 5.1.

4.6 Octupole effects

In their first global mass calculation in 1981 [19] Möller and Nix showed that the large
deviation obtained between calculated and measured masses in the vicinity of222Ra would
disappear if the energy were minimized also with respect to octupole shape degrees of free-
dom. However, although the source of the deviations in the222Ra region were understood at
the time, no global calculation with octupole deformations taken into account were carried
out until 1992 [28]. In the 1981 calculation only symmetric P2 and P4, were considered
whereas in 1992 both symmetric P6 and mass-asymmetric P3 distortions, were taken into
account in addition to the P2 and P4 deformations considered in 1981. For 222Ra it was
found that the inclusion of P6 deformations lowered the energy by about 0.7 MeV and
that the subsequent inclusion of P3 deformations lowered the ground-state energy by an
additional 1 MeV.

The results of the above study suggests that if octupole shape degrees of freedom are not
taken into account in a mass calculation, then one would expect, in the region around222Ra
correlated errors in the calculated masses of up to about 1 MeV. One may of course argue
that the results obtained in 1992 [28] and earlier by use of the macroscopic-microscopic
method are incorrect and that there are no octupole effect on the nuclear masses. However,
Leander and coworkers have in their series of papers [29–31] shown that there is a large body
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of nuclear-structure features of nuclei in the vicinity of 222Ra that are most convincingly
and consistently explained only through the mechanism of a sizable, permanent octupole
deformation in the ground state.

In addition, similar octupole effects on nuclear masses were observed both in Woods-
Saxon [30] calculations and in a calculation with an extended Thomas-Fermi model with a
Skyrme interaction (ETFSI-1) [32]. Although the Woods-Saxon calculations are also based
on the macroscopic-microscopic model they are based on a single-particle potential that has
been developed quite independently from the folded-Yukawa model. The ETFSI-1 model
which is quite different from the FRDM and Woods-Saxon models, has been independently
developed and employs a different effective force. The observation of an octupole effect of
a magnitude of 1 MeV on nuclear masses also in this model shows that this effect occurs
quite generally in nuclear-structure models that have been developed over the years and
tested successfully in comparisons to a large number of low-energy nuclear properties.

In the FDSM mass calculation there is no octupole interaction. One would therefore
expect that the calculated masses would exhibit large, correlated deviations in the vicinity
of 222Ra, deviations that would only be removed if an octupole interaction were specifically
included in the calculations. The absence of any characteristic deviation between the calcu-
lated FDSM masses and measured masses in this region is a clear indication that the model
is overparameterized, so that it is able to fit any reasonable data set. Consequently, we are
again led to the conclusion that the results of the FDSM model calculations are fortuitous
and without any particular significance.

5 Parameter determinations and extrapability

We illustrate by a few examples how details of model parameter determination procedures
strongly influence model properties. In particular we show that adjustments to data sets
that are too small or limited for the type of model investigated will lead to an unphysical
set of constants and a model that diverges when applied outside the region where the
parameters were adjusted.

5.1 Extrapolation of the two versions of the FDSM

It may be quite meaningless to compare different mass formulas in regions where there
are no known masses, since it is impossible to determine which model provides the better
extrapolation. We clearly see from Fig. 5 that the FDSM and the FRDM predict quite
different masses as we go away from nuclei with known masses. The authors of the FDSM
paper claim that their extrapolations should be superior. It may therefore be of particular
interest to compare the predictions of the two versions of the FDSM mass formula for
nuclei with unknown masses. If the predictions of the two versions diverge, the authors
of the FDSM paper obviously have a problem in extrapolating their models. If so, which
version gives the better extrapolation? And they do diverge, as illustrated in Figs. 6, 7 and
8. Only a few nucleons away from the fitted masses differences of several MeV appear.

5.2 Inadequacy of limited adjustments

To demonstrate that it is fairly trivial to obtain an rms deviation of about 0.2 MeV between
calculated and measured masses when the study is restricted to a single region between



R. Bengtsson, P. Möller/Why the Fermion Dynamical Symmetry Model Fails . . . 23

magic numbers we perform the following exercise. We adjust 9 macroscopic model param-
eters to obtain the best fit between calculated and measured masses. However, instead of
using 1654 measured masses between oxygen and the heaviest masses as we normally do,
we consider only 246 known masses in the region Z ≥ 82 and N ≥ 126. This is fewer
than the 332 masses considered in the FDSM work, because we do not include as data the
masses given by Wapstra systematics as discussed above. We use the finite-range liquid
drop mass model, a folded-Yukawa single particle potential and a Lipkin-Nogami pairing
interaction. This model represents a newer version of the model [7] quoted in the FDSM
work. In Fig. 9 we show the resulting deviations between calculated masses and measured
masses for nuclei between oxygen and the heaviest elements. We first observe that in the
region of adjustment we obtain, with only 9 parameters readjusted to this particular region
an error that is very close to the error 0.22 MeV obtained in the FDSM work. In addition
we clearly observe that the model strongly diverges outside the region where its parameters
were adjusted. From this observation and from other studies one may conclude that to be
physically interesting and significant a mass model should be formulated so that several
spherical and deformed regions are described with a single set of constants.

5.3 Extrapability of mass models

We have shown above that macroscopic-microscopic models with constants that were deter-
mined by adjustments to too limited regions of nuclei are strongly divergent when applied
to studies outside the region where its constants were determined. Is there any reason to
believe that models with constants that were determined from more extended regions of
nuclei are less divergent or not divergent at all? Yes, there are several convincing studies
that show that this is the case.

The original Möller-Nix mass model results published in 1981 [20] have been compared
to 354 masses that were not known when the model results were published. For these new
nuclei the error is just 10% larger than in the original region. A more modern version of
the model [5] exhibits only a 2% increase in the same case, which was now simulated by
limiting the model adjustment to the old 1981 data set.

An investigation of the extrapability towards the heavy region has also been carried out.
In this case the model parameters were adjusted only to nuclei with A ≤ 208. The error
for this region plus all heavier known nuclei (that were not included in this adjustment)
was about 0.745 MeV, compared to 0.669 MeV when all nuclei were included in the fit
[5]. Also, very significantly, it was found that the masses obtained for nuclei in or close to
the superheavy region did not depend critically on the data region used in the adjustment
procedure. As representative example we choose272110 in the center of the deformed super-
heavy region of relatively neutron-deficient nuclei and 288110 which is obtained as the center
of the spherical superheavy island in the FRDM (1992). For these two nuclei we obtained
mass excesses of 133.82 MeV and 165.68 MeV in the calculation based on adjusting the
parameters to all nuclei from oxygen to the heaviest elements. In the limited adjustment to
nuclei with A ≤ 208 we obtained mass excesses of 133.65 MeV and 166.79 MeV, respectively,
for these two nuclei. In the more limited adjustment the heaviest nucleus was 80 nucleons
away from the heaviest nucleus included in the adjustment.
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6 Testing the FRDM and FDSM with new data

Some time after the parameters of the FRDM and FDSM were determined new experimental
data have become available at significant distances from previously known data, as shown
in Figs 10 and 11.

The data consists of four α decay sequencess originating in 269110, 271110, 272111, and
277112, which were observed at GSI [33–35]. All these decay chains terminate in previously
known α-decays, which makes the identification of new nuclei unambiguous. These decay
chains contain 17 diferent alpha decays for which the mother and daughter masses were not
both known in 1992 when the FRDM and FDSM were adjusted.

The experimental Qα values are compared to the theoretical predictions of the FDSM
and FRDM models in Fig. 11. It should be observed that there are some ambiguities in
this comparison. It is not proven that the experimentally observed decays correspond to
ground-state to ground-state transitions. In particular in odd and odd-odd nuclei it is not
unlikely that the transition goes from the ground state to an excited state due to selection
rules [36,37]. It is less likely that a transition starts from an excited state, since the α
lifetimes are long enough to allow, at least in most cases, the mother nucleus to de-excite
to the ground state before emitting an α particle.

For the above reasons it can be assumed that the experimental Qα values in many cases
may be slightly smaller than the ones for the ground state to ground state transition, which
is the theoretically calculated quantity. In general, the experimental Qα values vary by at
most a couple of hundred keV between different event chains. We then plot only one set of
experimental Qα values, namely the highest observed. In the case where large differences
were observed between different decay chains namely for the decay starting at277112 where
the variation exceeds one MeV at Z = 110 we plot both of the observed decay chains.
Although the calculated Qα values are obtained as ground-state to ground-state transitions
but the experimental Qα values may correspond to other transitions, the following can
nevertheless be concluded: Within each experimental decay chain, Qα increases without
any exception with increasing mass (or proton) number. At proton number 102 Qα has a
value close to 8 MeV. At proton number 110, the value is close to 11 MeV.

For the decay chains starting at Z = 110 and Z = 111, the Qα values of the FRDM show
the same increasing trend as the experimental data. The slope, however, is smaller than in
the data. In the decay chain starting at Z = 112, the FRDM Qα value decreases slightly
from Z = 104 to Z = 106. The experimental values vary very little between Z = 102
and Z = 106, although they do increase. The overall agreement between the FRDM and
experiment is very good for the chain starting at proton number 112. The rms error between
the calculated FRDM Qα values and the highest experimental Qα values is 0.49 MeV for
the 17 decays in Fig. 11 for which not both mother and daughter masses were known in
1992. Thus, the FRDM extrapolates to this region without divergence since in the known
region where the model parameters were fitted to known masses, the rms error for 1450 Qα
values is 0.65 MeV [38].

The Qα values calculated with the FDSM show a very different behavior compared to
those of the FRDM and the experimental data. In the lower end of each α-decay chain,
the FDSM results agree with data about as well as the FRDM. This is for nuclei which
were included in the fit of the FDSM parameters. However, immediately above the last
fitted nucleus the Qα values start to deviate strongly from the experimental data. In all
four chains the FDSM Qα curve bends down strongly one or two α decays beyond the last
fitted nucleus. In the Z = 112 decay chain, which extends higher above the last fitted
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nucleus than the three other chains, the FDSM chain resumes its increasing trend above
the downbend but does not catch up with the experimental points.

In order to understand how Qα can deviate so strongly from data immediately above the
last fitted nucleus, it should be observed that the FDSM changes from SU3 to SU2 symmetry
in close vicinity to the last fitted nucleus in the four new decay chains, see Figs. 10 and 11.
The Qα value corresponding to the decay from the last SU2 nucleus in a chain to the first
SU3 nucleus is indicated with a circle in Fig. 11, whereas the heaviest nucleus included in
the FDSM parameter fit is shown by an arrow. A comparison with Fig. 12 shows that it
indeed is the transition between the SU2 and SU3 regions that causes the downbend and
not the fact that we are passing beyond the region of fitted masses. Fig. 12 shows four
extended α chains, corresponding to N − Z = 61 (transition point 265No), N − Z = 57
(transition point 265Rf), N − Z = 49 (transition point 265Hs) and N − Z = 45 (transition
point 269112). In all cases the obvious irregularity in the middle of the curves coincides with
the transition between the SU2 and SU3 regions as can be seen from Fig. 10. The fact that
the transition between the two symmetries appears at this location is a result of the Fermi
blocking of the FDSM, which apparently can be associated with a clear downbend in the
Qα curves. The experimental Qα values in fig. 11, show no sign of a downbend, thus giving
no support for a Fermi blocking in operation.

In Fig. 11 we have included also the results of the FRLDM model. It differs from the
FRDM in using for the macroscopic energy the finite-range liquid-drop model instead of
the finite-range droplet model. The FRLDM had a model error of 0.779 MeV in the fitted
region, in contrast to the FRDM for which the model error is 0.669 MeV [5]. However the
FRLDM has two fewer adjustable parameters than does the FRDM.

Although the FRLDM has a higher model error taken over all known masses than does
the FRDM, it seems to agree better with data for the high Z α-decay chains, perhaps
because models with fewer parameters often extrapolate better. However, it is not for this
purpose it is included in Fig. 11. It is rather for illustrating that although the top end of the
chains lies about 8 or more nucleons away from the last fitted one, the two versions of the
macroscopic-microscopic model both extrapolate very well, giving Qα values which differ
only by a few hundred keV. This should be compared with the two versions of the FDSM,
for which the calculated masses differ by several MeV, just a few nucleons away from the
last fitted nucleus as illustrated in Figs. 6–8.

The heaviest experimental mass, used in the fit of the FRDM and FRLDM constants, is
that of 263Sg. The heaviest nucleus in the GSI chains is 277112, which thus is 8 neutrons and
6 protons away from the heaviest nucleus included in the parameter fit. It is evident from
Fig. 11 that the FRDM and FRLDM masses, and hence the Qα values, can be extrapolated
over such distances without deviating much from each other. On the other hand, the
extrapolation of the FDSM gives masses and Qα values, which deviate significantly from
the other two models and from the experimental data. It therefore becomes evident that
the FDSM fails completely to describe the new experimental data in the heavy SU2 region
whereas the FRDM achieves similar accuracy here as in the region of known nuclei where
its parameters were determined.

7 Conclusions

Counting the number of model constants and trying to relate it to the quality of a model and
to how well a model can be extrapolated to unknown regions is not a straight-forward task.
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Parameters are of many different kinds, but all must be given numerical values in order to
calculate a value for an observable quantity, e.g. the mass of a nucleus. Some constants
have since long well-established values and may not even be thought of as parameters. On
the other end of the scale are completely “free” parameters, whose values are determined by
a least squares fit to some of the experimental quantities a model is supposed to describe.
In the FRDM all of these free parameters and the values obtained have a straigh-forward
physical interpretation.

Since the number of model parameters has been made one of the main issues by the
proponents of the FDSM model, we have in this paper described the model at a level
of detail that allows every single model parameter to be identified and we have made a
consistent count of the number of parameters in the model. In our opinion it is clear that
the claim in Ref. [1] that “Thus we have reduced the number of adjustable parameters in
the FDSM-Strutinsky mass formula from 16 in version I to 13 in version II.” is a gross
misrepresentation of the number of adjustable parameters in the FDSM, by any criteria for
labelling a parameter “adjustable”. However, considering also what is said in the previous
paragraph, we leave it open to the reader to draw further conclusions. Instead, we shall
concentrate on the conclusions that can be drawn from the experimental data which recently
have become available.

The new experimental data on Qα values, and thus differences between nuclear masses,
in the superheavy region show that the mass formula derived from the FDSM cannot be
extrapolated to describe those masses. Several reasons for this failure could be identified.

1. The specific formulation of the model, used for deriving the mass formula, is restricted
to nuclei in the region with proton numbers between Z = 82 and Z = 126 and
neutron numbers between N = 126 and N = 184. To fit the free model parameterss
only experimental masses of nuclei in this region can be used. There were, when the
parameters were fitted, only 246 experimental masses available. The distance from the
heaviest nucleus for which an experimental mass was available (Z = 106, N = 157)
to the center of the historical superheavy region at Z = 114 and N = 184 is 8 units
in proton number and 27 units in neutron number and to the doubly magic nucleus
Z = 126 and N = 184 (the heaviest nucleus covered by the FDSM mass formula) is
20 units in proton number and 27 units in neutron number. The extrapolation needed
to reach these nuclei is therefore very long, considering that the experimental masses
used in the fit only covers 24 units in proton number and 31 units in neutron number.
The FDSM mass predictions for the heaviest nuclei can therefore be expected to be
very uncertain.

2. I addition to the experimental masses another 86 masses, estimated (extrapolated)
according to Wapstra systematics [24], were used in the fit of the FDSM parameters.
The reliability of these masses is hard to judge, but experience shows that the error
is considerably larger than the error claimed for the FDSM masses. Including these
“Wapstra systematics” masses in the parameter fit implies that uncontrollable errors
are built into the FDSM mass formula. Since the “Wapstra systematics” masses
typically lie at the border of the region of the experimentally known masses, they
will have a particularly bad influence on how the FDSM mass formula extrapolates
to unknown mass regions.

3. The FDSM parameters are divided into two sets. One for nuclei with SU2 symmetry,
including nuclei in the vicinity of the doubly magic nucleus 208Pb as well as a large
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number of nuclei in the superheavy region below the doubly magic nucleus at Z=126
and N=184. Experimental masses for SU2 nuclei were only available in the region
around 208Pb when the FDSM masses were fitted. In the superheavy region only
two “Wapstra systematics” masses were available. Except for the guidance given by
these two masses, the FDSM masses in the superheavy SU2 region are the result of a
long-range extrapolation from the SU2 region near 208Pb. The FDSM masses in the
superheavy SU2 region can therefore be expected to have particularly large errors,
which has now been confirmed by the recently available Qα values in this region.

The second parameter set should be used for nuclei with SU3 symmetry, located in
between the two regions with SU2 symmetry. SU3 nuclei with known masses lie in a
compact region. Only eight new masses with SU3 symmetry have become available
since the parameters were fitted. Because they are just next to the region of previously
known masses it is not possible to evaluate the quality of the SU3 constants and the
extrapolative reliability of the FDSM by comparing with this limited data set.

4. The < VFDSM > term in the FDSM mass formula contains a complete second-order
expression in Np and Nn with adjustable coefficients in front of each term, which
should be an appropriate expression in the symmetry limits. However, when inserted
in the mass formula and used for fitting nuclear masses, the second order expression
does not only contain the proper FDSM energy but must also compensate for the
difference between the smooth Strutinsky energy and the Fermi gas energy. This
energy difference can only locally be described with high accuracy using a second
order expansion in Np and Nn. The ranges between the magic proton numbers 82 and
126 and the magic neutron numbers 126 and 184 are too long to qualify as local. On
the other hand, the region covered by experimental data, can be considered as local, at
least when divided into one SU2 and one SU3 region with a separate parameter set for
each region. This explains why the FDSM mass formula reproduces the experimental
masses with high accuracy (although no higher than a locally adjusted FRDM), but
also why it cannot, not even in principle, be used for long range extrapolations, which
are needed to e.g. predict masses in the historical superheavy region.

We have shown that the FRDM mass model agrees much better with the new experi-
mental data than does the FDSM mass formula. The reason for this is best understood by
noting four corresponding criteria which governed the development of the FRDM:

1. The FRDM mass model was fitted to all experimental masses from Z = N = 8 to
Z = 106, N = 157 known at the time of the fit. In total 1654 experimental masses were
available. Predicting masses in the superheavy region requires an extrapolation over
the same number of additional protons and neutrons as in the FDSM case. However,
a very long range of proton numbers (in total 99) and neutron numbers (in total 150)
were included in the fit. Extrapolation to the superheavy region, 20 to 30 protons
and neutrons above the heaviest nucleus considered in the fit, can therefore be made
with some degree of confidence, which has now been confirmed by the new data.

2. Only experimentally measured masses were included in the fit.

3. A single set of constants were used for all nuclei.

4. All terms in the FRDM mass model have a physically derived and well justified func-
tional dependence on the proton and neutron numbers. This prevents rapid uncon-
trollable divergences outside the region covered by the fit.
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H. J. Schött, A. G. Popeko, A. V. Yeremin, S. Saro, R. Janik, and M. Leino, Z.
Phys. A354 (1996) 229.

36) M. A. Preston, Physics of the nucleus (Addison-Wesley, Reading, 1962).
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Figure Captions

1. Terms entering the expression for the spherical proton shell-correction energy
M s.p.

sh (Z). Curve 1 shows
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2 and 3. Curve 5 shows EFG(Z) − EFG(82). The spherical proton shell correction
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sh (Z) is given by the difference between the curves 4 and 5.

2. Terms appearing in the spherical pairing correction energy Vpair
sh . Curve 1 shows

V pair
π (BCS). Curve 2 shows V pair

π (deg). The spherical proton pairing correction
V pair
sh (Z) is given by the difference between curve 1 and curve 2 and shown by curve

3.

3. The true Strutinsky shell-correction energy for protons, Eπ
shell(Z), calculated from

the Woods-Saxon single-particle level energies is shown by curve 1. A constant term,
shown by curve 4, has been added to Eπ

shell(Z) in order to normalize the energy to zero
for Z = 82. The proton part of the spherical shell-correction energy of the FDSM,
M s.p.

sh (Z), is shown by curve 2. Curve 3 shows the difference between curve 2 and curve
1. It represents a smooth energy of macroscopic origin, Eπ

smo−FG(Z) − Eπ
smo−FG(82),

contained in the FDSM spherical shell-correction energy, cf. Eq. (24).

4. Curve 1 shows the FDSM spherical proton pairing correction energy, Vpairsh (Z). Curve
2 shows the proton pairing correction energy of the microscopic-macroscopic model,
V pair
mm (Z). It has in this case been calculated from the same Woods-Saxon level energies

as used in the FDSM, but with the standard pairing strength [39], which is somewhat
larger than the one used in the FDSM. No term −G

∑

i v
4
i is included in V pair

mm (Z).
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A smooth energy of -1.2 MeV has been subtracted. Curve 3 shows the difference
between curve 2 and curve 1.

5. The FDSM shell correction < VFDSM > is shown by curve 1. Curve 2 shows the
energy Eshell(

208Pb)+Esmo−FG(
208Pb)−Esmo−FG(Z,N)+V pair

mm (Z,N)−V pair
sh (Z,N),

where V pair
mm (Z,N) has been calculated in the same way as in Fig. 4. When the FDSM

gives the same mass as the microscopic-macroscopic model, the two curves coincide.
This is well fulfilled for proton numbers below 92 (i.e. to the left of the vertical solid
line), where the FDSM constants have been fitted to known masses. The inclusion of
the pairing terms, V pair

mm (Z,N)−V pair
sh (Z,N), is essential. Putting these terms to zero

gives the result shown by curve 3. In the FDSM, SU(3) symmetry is used to the right
and SU(2) symmetry to the left of the vertical dotted line.

6. Difference between calculated masses for the even-even Po isotopes in version I and
version II of the FDSM. Both versions have been fitted to experimental masses for the
neutron numbers indicated by black dots. For these neutron numbers the difference
between the two versions is very small. The vertical solid lines indicate where the
symmetry is assumed to change from SU(2) to SU(3) in version II. The solid curve
shows the difference between version II masses and masses calculated with the SU(3)
constants of version I and the masses of version II. The dashed curve shows the
difference between masses calculated with the SU(2) constants of version I and the
masses of version II. The curves have been extended a few neutron numbers beyond
the symmetry transition point of version II.

7. Same as Fig. 6, but for the U isotopes.

8. Same as Fig. 6, but for the Rf isotopes. In this case only one experimental mass was
available, when the FDSM parameters were fitted, but two masses extrapolated by
Wapstra were also used.

9. Calculated model error for the case when macroscopic model parameters were adjusted
only to the 246 available masses for nuclei with Z ≥ 82 and N ≥ 126.

10. Nuclear chart in the region where the FDSM mass formula is applicable. Large dots
represent those masses for which measured values are given in the Audi 1989 mass
evaluation [24]. Small dots represent nuclei for which “Wapstra systematics” was
given in that evaluation. Squares show recently discovered α-decay chains. Regions
with FDSM SU2 and SU3 symmetry are also shown.

11. Comparison between measured and calculated energy releases in α decay of four heavy
nuclei. The experimental data are taken from Refs. [33,34,40]. The arrows indicate
the heaviest nucleus included in the FDSM parameter fit. Shaded circles show the
transitions which involve an SU2 mother nucleus and an SU3 daughter nucleus.

12. α-decay chains in the FDSM model for N − Z = 45, 49, 57, and 61. The figure
illustrates the irregularities that occur when a decay chain passes from nuclei with
SU2 symmetry to nuclei with SU3 symmetry. The transition point in each chain is
indicated with a shaded circle.


