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Abstract. In the macroscopic-microscopic model we have (1) enhanced our FRDM (1992) model of nuclear ground-
state masses and shapes, (2) performed a global calculationof nuclear shape isomers, in which we characterize the
ground-state and isomer minima in terms of their relative energies and shapes, and furthermore provide the saddle
heights between all pairs of minima, and (3) performed a calculation of fission potential-energy surfaces for more than
5 million different shapes for each of 5254 nuclei fromA = 170 toA = 330. We use an immersion technique borrowed
from geography to determine saddle points and minima in these surfaces. We also use this technique to establish if
structures such as deep valleys separated by high ridges arepresent. These would then give rise to differentmodes of
fission.

1 Introduction

In the macroscopic-microscopic method the starting point of a
calculation is usually a determination of the nuclear potential
energy for a specific shape. The calculation involves several
steps:

1. A shape is prescribed
2. A single-particle potential with this shape is generated. A

spin-orbit term is included.
3. The Schrödinger equation is solved for this deformed

potential and single-particle levels and wave-functions are
obtained.

4. The shell correction is calculated by use of Strutinsky’s
method.

5. The pairing correction is calculated in the BCS or Lipkin-
Nogami method.

To obtain the total potential energy a macroscopic contribution
is added to the shell-plus-pairing correction. The macroscopic
potential energy is the sum of a Coulomb energy, a surface
energy incorporating the finite range of the nuclear force, and
other terms. Full details are found in ref. [1].

Ground-state masses are determined by locating the lowest
energy minimum in regions of modest deformation. A fission
barrier is the optimum energy trajectory between the ground
state and separated fission fragments. To determine this trajec-
tory it is necessary to calculate the nuclear potential energy for
a large number of different shapes. In the calculation here we
calculate for each nucleus the energy for 5 003 325 different
shapes. Since our model is microscopic and we obtain nuclear
wave functions it is possible to calculate a large number of
quantities microscopically, for example energy levels,β-decay
transition rates from specific parent configurations to specific
daughter configurations, andβ-delayed fission and neutron-
emission rates.
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2 Nuclear ground-state masses and deformations

A goal for a theory of nuclear masses is that it be able to
accurately predict masses of nuclei for which no measured
values are available. Data for unknown nuclei are needed in
many simulations; one example is simulations of the r-process.
Our FRDM (1992), published in 1995 [1], was adjusted to a
1989 data base of nuclear masses. In 1997 [2] we compared the
published theoretical masses to masses that were not available
in the 1989 evaluation but listed in a new mass evaluation
[3,4]. The model error for the 217 predicted masses was
comparable to the error relative to the 1989 data base from
which the model parameters were determined, cf. fig. 1. We
now have a data base of 529 “new” masses available in the
most recent Audi evaluation [5]. The error of our published
mass table with respect to this whole data set is 0.46 MeV,
much smaller than with respect to the 1989 data base, cf. fig. 2.
In many cases we cannot make exactly the same comparison
for other microscopic models because most such models have
been adjusted to more recent experimental mass data sets. But
although the HFB8 mass model [6] was adjusted to most of
the mass data in the Audi 2003 evaluation, we have in fig. 3
compared the HFB8 mass table to the same data we used in
fig. 2. We observe that the HFB8 model error for these nuclei
is 0.635 MeV. Clearly, this test of the predictive power of
the FRDM (1995) is reassuring. An interesting observation
is that some points on the proton-rich side ofβ-stability
indicating large deviations between theory and experiment
in fig. 1 are not present in fig. 2. Since these two figures
are based on the identical theory, the difference means that
the experimental data points were either removed from the
evaluated data base, or changed by more than the error bars.
So some of the improvement between figs. 1 and 2 occurred
because theexperimental data changed, not the theory! It is
also of interest to note that whereas fig. 1 represents a double-
blind test (experiment and theory were not aware of the other)
fig. 2 represents only a single-blind test (theory was blind,
experiment was aware of theory).
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Fig. 1. An early study [2] of the reliability of the FRDM (1992) with
respect to 217 subsequently measured masses in ref. [3].

2.1 Enhanced FRDM mass table

We have now improved the FRDM (1992) mass table. Succes-
sive improvements are listed in table 1. The first three lines
show the published FRDM (1992) compared to the data set to
which it was adjusted (A1989), new masses measured since
then (A8903) and the totality of masses in the most recent
mass evaluation (A2003). Because of a 100 000 fold increase
in computer power since the FRDM (1992) calculation was
carried out we can now considerably refine the calculation.
On line 4 we show the result of a better optimization of the
constants to the 1989 data set. An indication that the original
adjustment was not quite optimum is that the mean errorµth

is substantially different from zero, namely 0.0156 MeV. In
all subsequent adjustments in our investigation here the mean
error is zero to four significant digits. Line 5 compares this
better optimized model to the 529 new masses. It is interesting
to note that the better optimized model has better predictive
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Fig. 2. Reliability of the FRDM (1992) with respect to 529 sub-
sequently measured masses in ref. [5], the most recent evaluation
available.
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Fig. 3. HFB8 masses compared to the same experimental data set of
529 masses as considered in fig. 2.

power (0.42 MeV versus 0.46 MeV)! Line 6 compares to the
entire 2003 data set. The next three lines differ only in that
fission barriers are not included in the adjustment. We have
earlier [8–10] observed that the FRDM should not be applied
to fission barriers. There is only a very minor improvement in
the model error in the region of adjustment, but it is of interest
to observe that the predictive power also improves slightly.
The next line (line 10 in table 1) shows the effect of adjusting
the model parameters to the newest 2003 data set. The model
is extraordinarily stable, the model error only improves by
0.0017 MeV. Line 11 shows the effect of triaxial shape
degrees of freedom on the ground-state masses. Although
only about 100 nuclei are affected, cf. fig. 4 for an example,
the improvement is still 0.01 MeV when averaged over the
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Fig. 4. The calculated ground state shape of106Ru is triaxial, as is
the case for several hundred other nuclei across the nuclearchart, for
details see ref. [7].
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more than 2000 calculated masses for which experimental
data exist. Readjustment of the model parameters after triaxial
corrections are included yields a further small reduction in
error to 0.6038 MeV.

In our 1992 mass calculation [1] the determination of the
ground-state mass proceeded in the following way. In the
initial step the potential energy was calculated as a function
of ǫ2 andǫ4. The ground-state minimum was identified in this
space and the values of the shape coordinatesǫ2 andǫ4 were
tabulated. Then, for each nucleus, two further minimizations
were carried out, both withǫ2 and ǫ4 held fixed at their
previously determined values. In one of the minimizations the
energy was minimized with respect toǫ3, in the otherǫ6 was
varied (withǫ3 = 0). The lowest of the two minima obtained
was tabulated as the ground state.

Here we considerably refine this calculation. In 1987,
when we performed the first step in our mass calculation,
namely the calculation of the potential-energy surfaces versus
ǫ2 and ǫ4 we saved (and retained ever since) these simple
potential-energy surfaces and a table ofall minima found in
these surfaces. Now we study the stability of all these minima
in a full 4D deformation space in the coordinatesǫ2, ǫ3, ǫ4 and
ǫ6. We use a grid with a grid-point distance of 0.01 in all 4
deformation parameters. We start by calculating a 4D “cube”
around the minimum found in the 2Dǫ2-ǫ4 space. Such a cube
consists of 81 grid points, 80 of them on the surface of the
cube. The lowest energy will be a grid point on the surface of
this cube, unless the initial point determined from the limited
2D calculation accidentally turns out to be the location of the
local minimum. If not, we construct a new 4D cube around the
grid-point corresponding to the lowest energy on the surface
of the initial cube, taking care not to recalculate energiesthat
are already calculated. We continue in this fashion until the
lowest-energy point isnot on the surface of the last cube
investigated. It is then the interior point in this last cubethat
is the minimum in the full 4D space. We investigate all the
minima found in the 2D space in this fashion. However, we
found that sometimes there exists one minimum forǫ3 = 0 and
another atǫ3 ≈ 0.1. separated by a low ridge. We therefore
repeat the search for minima with the above starting points,
exceptǫ3 = 0.1 in all the starting points. The lowest of the 4D
minima is the optimum choice for the ground state.

This refined calculation improves the accuracy of our
original study for two reasons. First, in the original study
we only investigated one minimum with respect to higher
multipole deformations, namely the lowest minimum found
in the 2Dǫ2-ǫ4 space. However, if another minimum, a shape
isomer, exists in the 2Dǫ2-ǫ4 space then, if the effect of varying
ǫ3 and ǫ6 is investigated for both these minima, it may turn
out that the higher of the original minima becomes the lowest
minimum after the full variation of the four deformation
parameters. Second, we perform a completely independent
variation of the four deformation parameters in a full 4D
deformation space, rather than the very restricted variation
that was the only tractable computation possible more than
15 years ago. As a historical note, let us mention that the
minimization of the potential energy with respect toǫ3 for
fixed ǫ2 and ǫ4 was carried out in 1990 on a set of 6 VAX-
VMS workstations at the Department of Mathematical Physics
in Lund. The calculations were submitted as batch jobs every

night (and restarted the subsequent night). It took, at thattime,
about 1 month to complete these simple calculations. Now, we
trivially can access about 100 000 times the computer power,
which opens up completely new vistas in our investigations.
A new mass table based on the 4D calculation is not quite
complete, but we can at this stage anticipate a final mass model
with an error in the 0.57–0.58 MeV range.

3 Shape isomers

In our study of shape isomers we calculate potential en-
ergy surfaces for 7206 nuclei in a deformation gridε2 =
(0.0, 0.025, . . . , 0.45), γ = (0.0, 2.5, . . .60.0), and ε4 =

(−0.12,−0.10, . . . , 0.12), altogether 6175 grid points. This
calculation is described in ref. [7], which focused on the
effect of triaxiality on the nuclear ground state. From this
calculation we also determine the shape and energy of shape-
isomer minima and the saddle heights between all pairs of
minima by immersion techniques. A complete table of results
and graphs will be submitted to A D  N
D T [12]. Due to space limitation we can here only
present one interesting example: quadruple shape coexistence
in 222U shown in fig. 5. The three shape minima are all less
than 1.5 MeV above the ground-state atǫ2 = 0.10. However,
from the 4D calculation above we know that this ground-state
is lowered by reflection-asymmetric shape degrees of freedom.
In this 4D space the minimum atǫ2 = 0.4 is 2.206 MeV above
the ground state. The effect of axial asymmetry and reflection
asymmetry on the nuclear ground state will be submitted for
publication soon [13].

4 Fission barriers

We have calculated fission potential-energy surfaces for 5254
nuclei from A = 170 to A = 330. For each nucleus the
energy is calculated for 5 009 325 different shapes in a 5-
dimensional deformation space. From these calculations we
can determine, by immersion techniques, minima, saddle
points between minima, valleys leading to different scission
configurations (that is different fissionmodes), ridge heights
between valleys, and the distinctly different saddle points that
provide the entry doorway to the different fission modes.
Triaxial shapes were studied in the vicinity of the first barrier
peak in a 3D calculation in theǫ parameterization. In fig. 6
we show for each compound system (Z,N) the barrier height
minus the neutron separation energy. When this number is
negative fission is energetically possible in neutron capture
on (Z,N − 1). Analysis of the debris after nuclear explosions
shows that capture chains on seed nuclei, indicated by red
arrows, stopped at the tips of the arrows [14]. Since the
plotted function becomes negative here it is consistent with
the observations; according to our calculation capture cannot
proceed further. The Th captures end earlier but this is thought
to be due to very low capture cross sections early in this chain
[14]. The consistency of our calculations with observations far
from stability offers encouragement for applications to the r-
process region.
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Table 1. FRDM (1992) and successive enhancements, compared to different data sets. The first column indicates a model designation, the
second which data set the model was adjusted to, the third which data set the mass table is compared to, and the last two columns the mean
deviation and the model error. Column 4 is the number of nuclei in the data set the model is compared to; the corresponding error is in the
last column. A1989, A2003, and A8903 stand for the Audi 1989 mass evaluation [11], the Audi 2003 mass evaluation [5], and masses that
are in the 2003 evaluation but not in the 1989 evaluation (“new” masses), respectively. The model constants are given in the middle section.
The top line gives the original model constants [1].

Model Adj. Comp. Nnuc a1 a2 J Q a0 ca C γ µth σth;µ=0

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

(92) A1989 A1989 1654 16.247 22.92 32.73 29.21 0.00 0.436 60 0.831 0.0156 0.6688
(92) A1989 A8903 529 0.1755 0.4617
(92) A1989 A2003 2149 0.0607 0.6314

(92)-a A1989 A1989 1654 16.245 23.02 32.22 30.73 -2.24 0.465104 0.927 0.0000 0.6614
(92)-a A1989 A8903 529 0.0174 0.4208
(92)-a A1989 A2003 2149 0.0114 0.6180
(92)-b A1989 A1989 1654 16.286 23.37 32.34 30.51 -5.21 0.468179 1.027 0.0000 0.6591
(92)-b A1989 A8903 529 0.0031 0.4174
(92)-b A1989 A2003 2149 0.0076 0.6157
(06)-a A2003 A2003 2149 16.274 23.27 32.19 30.64 -5.00 0.450169 1.000 0.0000 0.6140
(06)-b A2003 A2003 2149 0.0191 0.6042
(06)-c A2003 A2003 2149 16.274 23.27 32.18 30.59 -4.84 0.45 161 0.992 0.0000 0.6038
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Fig. 5. Quadruple shape coexistence in222U. Two of the shape-
coexisting minima are triaxial; the ground state is near spherical.
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Fig. 6. Calculated barrier height minus neutron-separation energy for
the compound system (Z,N). The arrows indicate the observed start
and end of observedprompt neutron-capture chains on seed Th, U,
and Pu isotopes in nuclear explosions [14].
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