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Outline	
  

!   Strongly	
  interac9ng	
  ultracold	
  atoms	
  

!   Fermions	
  with	
  2	
  spin	
  states	
  (2-­‐body	
  physics)	
  

!   Universal	
  rela9ons	
  and	
  Contact	
  

!   Operator	
  Product	
  Expansion	
  (OPE)	
  

!   Iden9cal	
  bosons	
  (3-­‐body	
  physics)	
  

!   Efimov	
  physics	
  and	
  Universal	
  rela9ons	
  	
  

!   Recent	
  result	
  on	
  unitary	
  Bose	
  gas	
  



4 

Strongly	
  interac9ng	
  atoms	
  

!   What	
  are	
  they?	
  
Ultracold	
  atoms	
  with	
  large	
  sca1ering	
  length	
  (a)	
  

!   Ultracold	
  atoms?	
  
!   Alkali	
  atoms:	
  6Li,	
  40K,	
  7Li,	
  23Na,	
  39K,	
  41K,	
  85Rb,	
  87Rb,	
  133Cs	
  
!   Trapped	
  in	
  harmonic	
  potenEal	
  
!   Cooled	
  to	
  T<	
  10-­‐6	
  K	
  	
  while	
  	
  TQGP>1012	
  K	
  
!   a	
  controlled	
  by	
  B	
  field	
  

Bose	
  gas	
  	
  
BEC	
  

Fermi	
  gas	
  with	
  2	
  spin	
  states	
  
BCS-­‐BEC	
  crossover	
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Strongly	
  interac9ng	
  atoms	
  
!   Quantum	
  Mechanics	
  at	
  low	
  energy	
  

	
  
	
  
!   At	
  very	
  low	
  energy	
  (k	
  <<	
  1/range),	
  	
  
	
  f(k)	
  depends	
  only	
  on	
  sca6ering	
  length	
  a	
  

!   For	
  large	
  |a|>>range	
  	
  
f(k)	
  is	
  nonperturbaEve	
  for	
  |a|k>1	
  !	
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Strongly	
  interac9ng	
  	
  par9cles	
  
!   For	
  atoms,	
  	
  

!   Near	
  Feshbach	
  resonance, 	
   	
   	
   	
  	
   	
  
	
  a	
  varies	
  with	
  the	
  B	
  field	
  !	
  

	
   	
  	
  

!   For	
  nucleons,	
  
!   a	
  =	
  -­‐19	
  fm	
  (n-­‐n)	
  and	
  a	
  =	
  +5.3	
  fm	
  (n-­‐p	
  spin-­‐triplet)	
  
!   a	
  varies	
  with	
  quark	
  masses	
  	
  

!   Tuning	
  u	
  and	
  d	
  masses	
  →	
  a	
  =	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  the	
  both	
  channels	
  	
  

!   Constraint	
  on	
  quark	
  mass	
  variaEon	
  from	
  BBN	
  

Bedaque,	
  Luu,	
  Pla6er	
  [PRC	
  2011]	
  

Braaten,	
  Hammer	
  	
  [PRL	
  2003]	
  

quark	
  mass	
  →	
  a	
  →	
  binding	
  energies	
  →	
  BBN	
  

1/m⇡ ⇡ 1.4 fm
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Effec9ve	
  Field	
  Theory	
  

	
  

	
  

	
  
	
  
	
   	
   	
  	
  

NonperturbaEve	
  problem!!	
  
2-body: analytic solution   
3- and 4-body: precise numerical solution 
Many-­‐body	
  is	
  challenging	
  :	
  Quantum	
  Monte	
  Carlo,	
  Lafce,	
  …	
  

Renormaliza9on	
  
	
  with	
  hard	
  cutoff	
  Λ:	
  

2-­‐body	
  diagrams	
  
(Lippmann-­‐Schwinger	
  eq.)	
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2-­‐body	
  state	
  

!   Low	
  energy	
  amplitude	
  	
  	
  

!   Cross	
  secEon	
  

!   Molecule	
  (when	
  a>0)	
  
!  Binding	
  energy	
  
!  Size	
  

	
  	
  	
  	
  	
  	
  
Scale	
  invariance	
  for	
  a	
  	
  

Of	
  course,	
  free	
  theory	
  (a-­‐>0)	
  is	
  scale	
  invariant!	
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!   IdenEcal	
  Bose	
  gas	
  :	
  	
  
Bose-­‐Einstein	
  Condensate	
  (a>0)	
  

!   Fermi	
  gas	
  with	
  2	
  spin	
  states	
  

	
  	
  	
  	
  	
  Many-­‐body	
  states	
  	
  	
  

BEC	
  limit	
  (a<<1/kF)	
  

Condensate	
  of	
  
molecules	
  

unitary	
  limit	
  (a	
  →	
  	
  	
  	
  	
  	
  	
  	
  )	
  

Scale	
  invariant	
  
maPer	
  

BCS	
  limit	
  (-­‐a<<1/kF)	
  

Fermi	
  gas	
  with	
  
Cooper	
  pairing	
  

Fermi	
  momentum:	
  kF=(3π2	
  <n>)1/3	
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!   Hold	
  for	
  any	
  state	
  of	
  the	
  system	
  
e.g.	
  few-­‐body/	
  many-­‐body,	
  homogeneous/trapped,	
  	
  
	
  	
  	
  	
  	
  	
  	
  normal	
  gas/superfluid,	
  ground	
  state/nonzero	
  temperature,	
  	
  	
  
etc.	
  	
  

!   Involve	
  an	
  extensive	
  property	
  of	
  the	
  system	
  
called	
  a	
  contact	
  (C)	
  

!   Are	
  determined	
  by	
  2-­‐body	
  physics	
  

Universal	
  Rela9ons	
  

Tan	
  [Annals	
  of	
  Physics	
  2008]	
  

for	
  fermions	
  with	
  2	
  spin	
  states	
  



!   AdiabaEc	
  relaEon:	
  variaEon	
  of	
  energy	
  with	
  sca6ering	
  length	
  

!   Tail	
  of	
  the	
  momentum	
  distribuEon	
  for	
  large	
  k>>kF	
  

	
  

!   Many	
  more	
  relaEons	
  involving	
  C	
  
Virial	
  theorem,	
  Pressure	
  relaEon,	
  Energy	
  relaEon	
  by	
  Tan	
  [2005],	
  Structure	
  factors	
  by	
  Son	
  
+	
  Thompson	
  [PRA	
  2010],	
  Hu,	
  Liu	
  +	
  Drummond	
  [EPL	
  2010],	
  Goldberger	
  +	
  Rothstein[arXiv:1012],	
  
CorrelaEon	
  for	
  viscosity	
  by	
  Taylor	
  +	
  Randeria	
  [PRA2010],	
  Enss,	
  Haussmann	
  +	
  Zwerger	
  [Annals	
  
Phys.	
  2011],	
  Hard	
  probe	
  	
  by	
  Nishida	
  [arXiv:1110],	
  and	
  more	
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Tan	
  2005	
  

Universal	
  rela9ons	
  

Tan	
  2005	
  n(k) ! C/k4

C is a central quantity relating various observables! 
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Verifying	
  universal	
  rela9on	
  
4

0 0.5 1 1.5 2 2.5 3 3.5 4
k / k

F

0

0.1

0.2

0.3

0.4

0.5

(k
/k

F
)4

 n
(k

/k
F
)

VMC
DMC
ext.

FIG. 4. (color online) The calculated momentum distribution
summed over both spins multiplied by k4/k4

F showing the k�4

tail. Dashed line show 2C/k4
F of Eq. 10

done in real space for the one-body density matrix to
give the radial one-body density matrix, while the mo-
mentum distribution is calculated for the k vectors that
correspond to the periodic simulation cell. The extrac-
tion of the k4 tail is rather noisy; using the radial one-
body density matrix gives a more accurate fit. From our
results it appears that the contact term dominates the
behavior for k & 2kF . Our asymptote is consistent with
the value 0.229(1) expected from ⇣ = 0.901(2) (dashed
line in Fig. 4).

Recent experiments have measured the contact pa-
rameter from the equation of state [5], momentum dis-
tribution directly using ballistic expansion and indi-
rectly through the rf line shape and photoemission spec-
troscopy [5], and from the static structure factor [5].
Navon et al. [5] extracted a value of ⇣ = 0.93(5) from
their equation of state measurements. Our best value
of ⇣ = 0.901(3) is well within their experimental errors.
Kunhle et al. [5] calculate a slope of S(k) versus kF /k
at large k for 1/(kFa) = 0 of 0.75(3) at T = 0.10(2)TF ,
giving a value of ⇣ = 0.80(3), while Stewart et al. give
values somewhat away from unitarity which also give ⇣
lower than our value.

In conclusion, we have used Quantum Monte Carlo
techniques to study the short-range correlations of uni-
tary Fermi gases as encoded in Tan’s contact parame-
ter. The extractions from various observables all give the
same result within statistical errors. These Monte Carlo
methods give particularly low variance values for the en-
ergy of the system and with minimal bias. Therefore
extracting the contact parameter from the equation of
state is the simplest and most reliable. However, we have
shown that its value extracted from the two-body radial
distribution function, the one-body radial density matrix,
and the momentum distribution also give the same re-
sults albeit with somewhat larger error bars. For each of
these quantities we have also determined the regime over
which the leading contact behavior is dominant, which

should be useful to future experiment in extracting the
contact behavior and leading corrections.
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Quantum	
  Monte	
  Carlo	
  

Gandolfi,	
  Schmidt,	
  Carlson	
  
[PRA	
  2011]	
  

Experiment	
  
Experiment

J. T. Stewart et al
PRL 104, 235301 (2010)

Plateau seen both in theory and experiment!

T/TF = 0 - 0.5

Momentum distribution & Contact
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4

Theory (lattice)
J. E. Drut, T. A. Lähde, T. Ten

Phys. Rev. Lett. 106, 205302 (2011)

JILA	
  group	
  
[PRL	
  2010]	
  

Plateau	
  (1/k4	
  tail)	
  above	
  2	
  kF!	
  

scaled	
  by	
  Fermi	
  momentum	
  

	
  kF=(3π2	
  <n>)1/3	
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Universal	
  rela9ons	
  
!   Adiaba9c	
  rela9on	
  

!   operaEonal	
  definiEon	
  

!   contact	
  density	
  for	
  given	
  

!   The	
  contact	
  C	
  
!   is	
  an	
  extensive	
  thermodynamic	
  quanEty	
  conjugate	
  to	
  1/a	
  

!   measures	
  a	
  probability	
  for	
  2	
  atoms	
  being	
  close	
  together	
  

!   depends	
  on	
  the	
  state	
  

!   depends	
  on	
  sca6ering	
  length	
  (a),	
  density	
  (n),	
  temperature	
  (T),
…	
  

C = 4⇡a2
dE

da

Hint = g  †
1 

†
2 2 1

dE
da

= h d

da
Hinti = 1

4⇡a2
hg2  †

1 
†
2 2 1i
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Rela9ons	
  for	
  dimer	
  
!   Dimer	
  contact	
  :	
  

	
  
	
  
!   Dimer	
  wavefuncEon:	
  

	
  
!   Tail	
  of	
  momentum	
  distribuEon:	
  

C = 4⇡a2
dE

da
=

8⇡

a

n(k) =  ̃† ̃(k) ! 8⇡/a

k4
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!  Contact	
  density	
  (	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ) 	
   	
   	
   	
  
	
  	
   	
   	
   	
  for	
  homogeneous	
  gas	
  at	
  T=0	
  

BEC	
  limit	
  (a<<1/kF)	
   unitary	
  limit	
  (a→	
  	
  	
  	
  	
  	
  	
  	
  )	
   BCS	
  limit	
  (-­‐a<<1/kF)	
  

Many-­‐body	
  states	
  

Gandolfi,	
  Schmidt,	
  Carlson	
  
[PRA	
  2011]	
  

8⇡/a⇥ n/2 10.51(3)n4/3



!   Operator	
  Product	
  Expansion	
  

!   lowest	
  scaling	
  dimension	
  operators	
  

!   Determine	
  Wilson	
  coeff.	
  by	
  matching	
  few-­‐body	
  matrix	
  elements	
  	
  
Few-­‐body	
  problem	
  can	
  be	
  solved	
  exactly!	
  

!   Operator	
  idenEty	
  is	
  valid	
  for	
  any	
  states	
  →	
  Universal	
  relaEon	
  

OPE	
  reveals	
  aspects	
  of	
  many-­‐body	
  physics	
  	
  
controlled	
  by	
  few-­‐body	
  physics!!	
  

16 

Proof	
  of	
  universal	
  rela9on	
  

3	
   4	
   6-­‐2=4	
  
 †
1 1,  

†
1
~r 1,  

†
1i

@
@t 1,  

†
1r2 1, g2 †

1 
†
2 1 2, · · ·

5	
   5	
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Operator	
  product	
  expansion	
  
	
   Braaten	
  and	
  Pla1er	
  [PRL	
  2008]	
  

Aser	
  matching	
  for	
  1-­‐	
  and	
  2-­‐atom	
  states	
  …	
  

n(k) = h ̃†
1 ̃1(k)i

=

Z

R

Z

r
e�ik·rh †

1(R� 1
2r) 1(R+ 1

2r)i

~r�(k)

1

k4 Contact	
  operator	
  



18 

Matching	
  for	
  2-­‐atom	
  State	
  

	
  

Wilson	
  Coefficient	
  -­‐>	
  -­‐r	
  /(8π)	
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Iden9cal	
  Bosons	
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2-­‐	
  and	
  3-­‐body	
  physics	
  
!   2-­‐body	
  :	
  Similar	
  to	
  fermions	
  except	
  for	
  staEsEcs	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Scale	
  invariance	
  when	
  	
  
!   3-­‐body	
  :	
  	
  

!   Efimov	
  trimers:	
  
	
  
	
  
	
  
	
  
	
  	
  	
  
	
  	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

Efimov	
  
physics	
  

Broken	
  to	
  discrete	
  scale	
  invariance	
  !!!	
  
Log-­‐periodic	
  behavior	
  !!!	
  

En+1/En = 22.72
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Efimov	
  physics	
  in	
  atom	
  loss	
  
iden9cal	
  bosons	
  

Physics 3, 9 (2010)

FIG. 3: Observations of Efimov resonances in optically trapped
gases of ultracold cesium. The panel on the left-hand side
shows experimental results [24] on atomic three-body re-
combination, where a prominent triatomic Efimov resonance
shows up for a < 0; here loss is expressed in terms of a re-
combination length r µ L1/4

3 [22]. The dots represent measure-
ments taken at 10 nK, while the other data have been taken
between 200 and 450 nK. The panel on the right-hand side dis-
plays the two-body loss rate coefficient b measured for inelas-
tic atom-dimer collisions [26] at two different temperatures,
40 nK (open triangles) and 170 nK (filled squares). Here a
prominent atom-dimer Efimov resonance shows up for a > 0.
The solid lines represent fits based on universal effective-field
theory [27, 28].

a general a4 scaling [20, 21] and a dimensionless func-
tion C(a)[28]. The function C(a) reveals the Efimov
physics in the problem, following a logarithmically pe-
riodic dependence according to Efimov’s scaling law,

C(22.7a) = C(a). (4)

For the function C(a), analytic expressions are avail-
able, based on effective field theory [28]. The experi-
mental results can be fitted with the predictions of ef-
fective field theory, which involves two free parameters.
Such fits are shown by the solid lines in Fig. 3. The
two parameters are related to the resonance position and
their width. The position is directly related to the (uni-
versal) three-body parameter, whereas the width corre-
sponds to the lifetime of Efimov states against decay
into more deeply bound states, which is beyond univer-
sal physics.

The cesium experiments in Innsbruck were the first to
observe Efimov states by detecting the basic resonance
phenomena for both negative and positive values of the
scattering length. They also showed indications of a re-
combination minimum as another important feature re-
lated to universal three-body physics [22, 29]. The tun-
ing range in these cesium experiments, however, was
restricted by the special properties of the low-field Fesh-
bach resonance that was exploited. Therefore an impor-
tant ingredient of Efimov physics, the existence of the
universal scaling factor, remained unobserved.

In 2009, three other groups reported experimental ob-
servations of Efimov states in bosonic quantum gases
near a Feshbach resonance and provided further insight
studying the decay properties near a Feshbach reso-
nance. In these experiments, the complete tuning range
across full Feshbach resonances could be exploited. The

FIG. 4: Observations of Efimov physics on Feshbach reso-
nances in 39K and 7Li. The decay of the trapped atomic sam-
ples is analyzed according to Eq. (2) and expressed in terms of
the loss rate coefficient L3 as a function of the s-wave scatter-
ing length a. The results in (a) were obtained in Florence on a
broad Feshbach resonance in 39K atoms [30]. The data in (b)
and (c) show the results on 7Li from Bar Ilan University [31]
and Rice University [32], respectively. These two experiments
employed Feshbach resonances in two different atomic states.

results of these experiments are compiled in Fig. 4.
The Florence experiment on 39K [30] provided a first

observation of Efimov’s scaling factor. Besides the ob-
servation of a triatomic resonance for a < 0 similar to the
cesium work, the major breakthrough of this work con-
sisted of the observation of two consecutive minima in
the three-body recombination rate for a > 0. Such min-
ima arise from the destructive interference between two
recombination pathways [22], and they provide another
signature of Efimov physics. The Florence group ob-
served a ratio of 25± 4 for the scattering lengths where
the consecutive minima occurred. Within the experi-
mental uncertainties, this value is consistent with Efi-
mov’s scaling factor of 22.7. A further prediction of uni-
versal theory is that these recombination minima should
be located in between the positions of atom-dimer res-
onances. Surprisingly, although being performed with
an atomic gas (and not an atom-molecule mixture), the
Florence experiments also revealed signatures of these
atom-dimer resonances. These observations took ad-
vantage of an avalanche effect caused when a dimer is
formed in a three-body recombination event. At a reso-
nance, the dimer has a large cross section for secondary
collisions with atoms, which can lead to enhanced trap
loss with nl >> 3 in Eq. (3).
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loss. We ascribe this observation to a high
probability for dimers to undergo vibrational
relaxation collisions that result in kinetic energies
much greater than U. Four-body processes
proceed in a similar fashion (6, 15).

The equation describing the dynamics of
three- and four-body loss is

1
N
dN
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¼ −
gð3Þ

3!
L3〈n2〉 −

gð4Þ

4!
L4〈n3〉 ð1Þ

where N is the total number of atoms in the trap
at time t, and the brackets denote averages over
the density distribution n (17). For a thermal
gas, the spatial correlation coefficients g(3) and
g(4) are, respectively, 3! and 4!, whereas for a
BEC, both are set to 1 (20, 21). We have ver-
ified that heating from recombination is small
for our short observation times and therefore
omit this effect in our analysis (15, 19). By fitting
the time evolution of the number of atoms to the
solution of Eq. 1, we extract L3 and L4 as a

function of a. Figure S1 shows the loss of atoms
as a function of time in regimes where either L3
or L4 dominates (17). Four-body loss is readily
distinguished from three-body loss by the shape
of the loss curve.

Figure 1 shows the extracted values of L3
across the Feshbach resonance, exhibiting the
expected a4 scaling (22, 23), but with several
dips and peaks punctuating this trend. Two
prominent peaks, labeled a−1 and a−2 in Fig. 1A,
dominate the landscape for a < 0. We attribute

Fig. 1. (A) L3 as a func-
tion of a. Data shown
with purple diamonds
correspond to a thermal
gas withN~106, T~1 to
3 mK (31), and U ~ 6 mK
and were taken with
radial and axial trapping
frequencies wr = (2p)
820 Hz and wz = (2p)
7.3 Hz, respectively. The
remaining data corre-
spond to a BEC with N ~
4 × 105, T < 0.5 TC, U ~
0.5 mK, and wr = (2p)
236Hz.Weadjustwz (17)
to enhance or reduce
three-body loss, where
wz = (2p) 1.6 Hz (red tri-
angles), wz = (2p) 4.6 Hz
(blue circles), and wz =
(2p)16Hz (greensquares).
The black dashed lines
show an a4 scaling, and
the thick black solid lines
are fits to an analytic
theory (2, 17). The thin
green lines show the
square of the energies (in arbitrary units) of the first and second Efimov states,
as predicted from the universal theory (2), where we have fixed the location of the
first Efimov state to overlap with a1−, and the atom-dimer continuum is coincident
with the dashed line for a > 0. Several representative error bars indicating the SE

from the fit are shown (17). (B toD) Detail around the loss features associated with
the atom-dimer and two possible dimer-dimer resonances. The black dotted lines
are fits to eq. S4, whereas the black solid lines include additional super-
imposed Gaussian fits to account for the features not described by eq. S4.

Table 1. Locations (in a0) of three- and four-body loss fea-
tures and inelasticity parameters (dimensionless) (17). The fea-
tures a∗2,1 and a∗2,2 are tentatively assigned. The first number
in parentheses characterizes the range over which c2 of the
fit to theory increases by one while simultaneously adjusting
the other parameters in the fit. The second number charac-
terizes the systematic uncertainties in the determination of
a (17).

a > 0 a < 0

a1þ ¼ 119(11)(0) a1− ¼ −298(10)(1)
a2þ ¼ 2676(67)(128) a2− ¼ −6301(264)(740)
a2∗ ¼ 608(11)(7) a1,1T ∼ −120(20)(0)
[a2,1∗ ≈ 1470(15)(38)] a1,2T ≈ −295(35)(1)
[a2,2∗ ≈ 3910(60)(278)] a2,1T ≈ −2950(200)(150)
h1þ ¼ 0:079(32)(20) a2,2T ≈ −6150(800)(700)
h2þ ¼ 0:039(4)(10) h− ¼ 0:13(1)(3)

Table 2. Relative locations of loss features, those predicted by theory, and the percent
difference D = (data/theory – 1). The uncertainties are those propagated from Table 1.

Ratio Data Theory D(%)
a > 0 a2þ=a1þ 22.5(22)(11) 22.7* −1(9)(5)

a2þ=a2∗ 4.40(14)(16) 4.46* −1(3)(4)
a2,1∗ =a2∗ ≈2.42(5)(4) 2.37‡ +2(2)(2)
a2,2∗ =a2∗ ≈6.4(2)(4) 6.6‡ −3(2)(6)

a < 0 a2−=a1− 21.1(11)(24) 22.7* −7(5)(11)
a1,1T =a1− ~0.40(7)(0) 0.43† −6(16)(0)
a1,2T =a1− ≈0.99(12)(0) 0.90† +10(14)(0)
a2,1T =a2− ≈0.47(4)(4) 0.43† +9(9)(9)
a2,2T =a2− ≈0.98(13)(1) 0.90† +8(14)(1)

a → T∞ ja1−j=a1þ 2.5(2)(0) 4.9* −49(5)(0)
ja2−j=a2þ 2.4(1)(4) 4.9* −52(2)(9)
ja1−j=a2∗ 0.49(2)(1) 0.97* −49(2)(1)
ja2−j=a2∗ 10.4(5)(14) 22.0* −53(2)(6)

*See (2). †See (7). ‡See (28).
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FIG. 2: (Color online) Three-body recombination rate constant K3 as a function of the magnetic

field B from 0 to 600 G. The solid squares and dots are data points from Refs. [26] and [27],
respectively. The curve is the absolutely normalized result for Kdeep

3 with κ∗ = 76.8 a−1
0 and

η∗ = 0.11. The two vertical dotted lines mark the boundaries of the region in which the absolute
values of all three scattering lengths are greater than 2 ℓvdW.

the recombination rate [29]. For their 3-body parameters, they used the real and imaginary
parts of the logarithmic derivative of the hyperradial wavefunction. Schmidt, Floerchinger,
and Wetterich used functional renormalization methods to calculate the recombination rate
[30]. For their 3-body parameters, they used the real and imaginary parts of the detuning
energy of a triatomic molecule. The results of both groups for K3 as a function of the
magnetic field are similar to our results in Fig. 2. One difference is that in Refs. [29, 30]
the recombination rate was calculated only up to an overall normalization constant that was
determined by fitting the data. In our calculation, the absolute normalization is determined
by the 3-body parameters κ∗ and η∗.

In Ref. [43], Wenz et al. provided an explanation for the loss feature near 500 G being
much broader than predicted in Refs. [28–30]. They pointed out that there are deep dimers
whose binding energies vary significantly over the low-field region. These dimers are those
responsible for the Feshbach resonances 690 G, 811 G, and 834 G. In the high-field region,
they are shallow dimers, but they become deep dimers in the low-field region. Their binding
energies change over the low-field universal region by as much as a factor of 6. Wenz et al.
assumed that contributions to the 3-body parameter η∗ scale like the inverse of the binding
energy of the deep dimer. They used the coefficient in this scaling relation as a fitting
parameter along with the 3-body parameter equivalent to κ∗. They obtained an excellent
fit to K3 over the entire low-field region, including the narrow loss feature, the broad loss
feature, and the monotonic rise in between. Their assumption for the scaling of η∗ with the
binding energy of the deep dimer can be justified by an explicit calculation in a two-channel
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FIG. 3: (Color online) Energy of the Efimov trimer as a function of the magnetic field B in the

low-field region. The binding frequency E(1)
T /(2πh̄) (dark solid line) and the frequency Γ(1)

T /(2πh̄)

associated with the width (difference between dark dashed lines) were obtained from the complex
energy eigenvalue calculated using the parameters κ∗ = 76.8 a−1

0 and η∗ = 0.11. Also shown for
comparison are the small-η∗ approximation in Eqs. (24) and (25) for the binding frequency (light

solid line) and for the frequency associated with the width (difference between light dashed lines).
The two vertical dotted lines mark the boundaries of the region in which the absolute values of all

three scattering lengths are greater than 2 ℓvdW.

model [44].
In Ref. [43], Wenz et al. proposed a simple analytic approximation for the 3-body recom-

bination rate in regions where all 3 scattering lengths are negative. Their approximation is
the analytic result for equal scattering lengths in Eq. (19), with a replaced by an effective
scattering length am given by

am = −
[

(a21a
2
2 + a22a

2
3 + a23a

2
1)/3

]1/4
. (28)

Another possible choice for an effective scattering length is the geometric mean of the three
scattering lengths:

ag = −|a1a2a3|1/3. (29)

We can use our universal results to test the accuracy of that approximation. We find that
the analytic result in Eq. (19) with a replaced by the geometric mean ag in Eq. (29) is a
significantly more accurate approximation.

C. Efimov Trimers

Naidon and Ueda [29] and Schmidt, Floerchinger, and Wetterich [30] calculated the bind-
ing energy of the Efimov trimer that is responsible for the loss features in Fig. 2. Its binding
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loss. We ascribe this observation to a high
probability for dimers to undergo vibrational
relaxation collisions that result in kinetic energies
much greater than U. Four-body processes
proceed in a similar fashion (6, 15).

The equation describing the dynamics of
three- and four-body loss is

1
N
dN
dt

¼ −
gð3Þ

3!
L3〈n2〉 −

gð4Þ

4!
L4〈n3〉 ð1Þ

where N is the total number of atoms in the trap
at time t, and the brackets denote averages over
the density distribution n (17). For a thermal
gas, the spatial correlation coefficients g(3) and
g(4) are, respectively, 3! and 4!, whereas for a
BEC, both are set to 1 (20, 21). We have ver-
ified that heating from recombination is small
for our short observation times and therefore
omit this effect in our analysis (15, 19). By fitting
the time evolution of the number of atoms to the
solution of Eq. 1, we extract L3 and L4 as a

function of a. Figure S1 shows the loss of atoms
as a function of time in regimes where either L3
or L4 dominates (17). Four-body loss is readily
distinguished from three-body loss by the shape
of the loss curve.

Figure 1 shows the extracted values of L3
across the Feshbach resonance, exhibiting the
expected a4 scaling (22, 23), but with several
dips and peaks punctuating this trend. Two
prominent peaks, labeled a−1 and a−2 in Fig. 1A,
dominate the landscape for a < 0. We attribute

Fig. 1. (A) L3 as a func-
tion of a. Data shown
with purple diamonds
correspond to a thermal
gas withN~106, T~1 to
3 mK (31), and U ~ 6 mK
and were taken with
radial and axial trapping
frequencies wr = (2p)
820 Hz and wz = (2p)
7.3 Hz, respectively. The
remaining data corre-
spond to a BEC with N ~
4 × 105, T < 0.5 TC, U ~
0.5 mK, and wr = (2p)
236Hz.Weadjustwz (17)
to enhance or reduce
three-body loss, where
wz = (2p) 1.6 Hz (red tri-
angles), wz = (2p) 4.6 Hz
(blue circles), and wz =
(2p)16Hz (greensquares).
The black dashed lines
show an a4 scaling, and
the thick black solid lines
are fits to an analytic
theory (2, 17). The thin
green lines show the
square of the energies (in arbitrary units) of the first and second Efimov states,
as predicted from the universal theory (2), where we have fixed the location of the
first Efimov state to overlap with a1−, and the atom-dimer continuum is coincident
with the dashed line for a > 0. Several representative error bars indicating the SE

from the fit are shown (17). (B toD) Detail around the loss features associated with
the atom-dimer and two possible dimer-dimer resonances. The black dotted lines
are fits to eq. S4, whereas the black solid lines include additional super-
imposed Gaussian fits to account for the features not described by eq. S4.

Table 1. Locations (in a0) of three- and four-body loss fea-
tures and inelasticity parameters (dimensionless) (17). The fea-
tures a∗2,1 and a∗2,2 are tentatively assigned. The first number
in parentheses characterizes the range over which c2 of the
fit to theory increases by one while simultaneously adjusting
the other parameters in the fit. The second number charac-
terizes the systematic uncertainties in the determination of
a (17).

a > 0 a < 0

a1þ ¼ 119(11)(0) a1− ¼ −298(10)(1)
a2þ ¼ 2676(67)(128) a2− ¼ −6301(264)(740)
a2∗ ¼ 608(11)(7) a1,1T ∼ −120(20)(0)
[a2,1∗ ≈ 1470(15)(38)] a1,2T ≈ −295(35)(1)
[a2,2∗ ≈ 3910(60)(278)] a2,1T ≈ −2950(200)(150)
h1þ ¼ 0:079(32)(20) a2,2T ≈ −6150(800)(700)
h2þ ¼ 0:039(4)(10) h− ¼ 0:13(1)(3)

Table 2. Relative locations of loss features, those predicted by theory, and the percent
difference D = (data/theory – 1). The uncertainties are those propagated from Table 1.

Ratio Data Theory D(%)
a > 0 a2þ=a1þ 22.5(22)(11) 22.7* −1(9)(5)

a2þ=a2∗ 4.40(14)(16) 4.46* −1(3)(4)
a2,1∗ =a2∗ ≈2.42(5)(4) 2.37‡ +2(2)(2)
a2,2∗ =a2∗ ≈6.4(2)(4) 6.6‡ −3(2)(6)

a < 0 a2−=a1− 21.1(11)(24) 22.7* −7(5)(11)
a1,1T =a1− ~0.40(7)(0) 0.43† −6(16)(0)
a1,2T =a1− ≈0.99(12)(0) 0.90† +10(14)(0)
a2,1T =a2− ≈0.47(4)(4) 0.43† +9(9)(9)
a2,2T =a2− ≈0.98(13)(1) 0.90† +8(14)(1)

a → T∞ ja1−j=a1þ 2.5(2)(0) 4.9* −49(5)(0)
ja2−j=a2þ 2.4(1)(4) 4.9* −52(2)(9)
ja1−j=a2∗ 0.49(2)(1) 0.97* −49(2)(1)
ja2−j=a2∗ 10.4(5)(14) 22.0* −53(2)(6)

*See (2). †See (7). ‡See (28).
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a > 0 a2þ=a1þ 22.5(22)(11) 22.7* −1(9)(5)

a2þ=a2∗ 4.40(14)(16) 4.46* −1(3)(4)
a2,1∗ =a2∗ ≈2.42(5)(4) 2.37‡ +2(2)(2)
a2,2∗ =a2∗ ≈6.4(2)(4) 6.6‡ −3(2)(6)

a < 0 a2−=a1− 21.1(11)(24) 22.7* −7(5)(11)
a1,1T =a1− ~0.40(7)(0) 0.43† −6(16)(0)
a1,2T =a1− ≈0.99(12)(0) 0.90† +10(14)(0)
a2,1T =a2− ≈0.47(4)(4) 0.43† +9(9)(9)
a2,2T =a2− ≈0.98(13)(1) 0.90† +8(14)(1)

a → T∞ ja1−j=a1þ 2.5(2)(0) 4.9* −49(5)(0)
ja2−j=a2þ 2.4(1)(4) 4.9* −52(2)(9)
ja1−j=a2∗ 0.49(2)(1) 0.97* −49(2)(1)
ja2−j=a2∗ 10.4(5)(14) 22.0* −53(2)(6)

*See (2). †See (7). ‡See (28).
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loss. We ascribe this observation to a high
probability for dimers to undergo vibrational
relaxation collisions that result in kinetic energies
much greater than U. Four-body processes
proceed in a similar fashion (6, 15).

The equation describing the dynamics of
three- and four-body loss is

1
N
dN
dt

¼ −
gð3Þ

3!
L3〈n2〉 −

gð4Þ

4!
L4〈n3〉 ð1Þ

where N is the total number of atoms in the trap
at time t, and the brackets denote averages over
the density distribution n (17). For a thermal
gas, the spatial correlation coefficients g(3) and
g(4) are, respectively, 3! and 4!, whereas for a
BEC, both are set to 1 (20, 21). We have ver-
ified that heating from recombination is small
for our short observation times and therefore
omit this effect in our analysis (15, 19). By fitting
the time evolution of the number of atoms to the
solution of Eq. 1, we extract L3 and L4 as a

function of a. Figure S1 shows the loss of atoms
as a function of time in regimes where either L3
or L4 dominates (17). Four-body loss is readily
distinguished from three-body loss by the shape
of the loss curve.

Figure 1 shows the extracted values of L3
across the Feshbach resonance, exhibiting the
expected a4 scaling (22, 23), but with several
dips and peaks punctuating this trend. Two
prominent peaks, labeled a−1 and a−2 in Fig. 1A,
dominate the landscape for a < 0. We attribute

Fig. 1. (A) L3 as a func-
tion of a. Data shown
with purple diamonds
correspond to a thermal
gas withN~106, T~1 to
3 mK (31), and U ~ 6 mK
and were taken with
radial and axial trapping
frequencies wr = (2p)
820 Hz and wz = (2p)
7.3 Hz, respectively. The
remaining data corre-
spond to a BEC with N ~
4 × 105, T < 0.5 TC, U ~
0.5 mK, and wr = (2p)
236Hz.Weadjustwz (17)
to enhance or reduce
three-body loss, where
wz = (2p) 1.6 Hz (red tri-
angles), wz = (2p) 4.6 Hz
(blue circles), and wz =
(2p)16Hz (greensquares).
The black dashed lines
show an a4 scaling, and
the thick black solid lines
are fits to an analytic
theory (2, 17). The thin
green lines show the
square of the energies (in arbitrary units) of the first and second Efimov states,
as predicted from the universal theory (2), where we have fixed the location of the
first Efimov state to overlap with a1−, and the atom-dimer continuum is coincident
with the dashed line for a > 0. Several representative error bars indicating the SE

from the fit are shown (17). (B toD) Detail around the loss features associated with
the atom-dimer and two possible dimer-dimer resonances. The black dotted lines
are fits to eq. S4, whereas the black solid lines include additional super-
imposed Gaussian fits to account for the features not described by eq. S4.

Table 1. Locations (in a0) of three- and four-body loss fea-
tures and inelasticity parameters (dimensionless) (17). The fea-
tures a∗2,1 and a∗2,2 are tentatively assigned. The first number
in parentheses characterizes the range over which c2 of the
fit to theory increases by one while simultaneously adjusting
the other parameters in the fit. The second number charac-
terizes the systematic uncertainties in the determination of
a (17).

a > 0 a < 0

a1þ ¼ 119(11)(0) a1− ¼ −298(10)(1)
a2þ ¼ 2676(67)(128) a2− ¼ −6301(264)(740)
a2∗ ¼ 608(11)(7) a1,1T ∼ −120(20)(0)
[a2,1∗ ≈ 1470(15)(38)] a1,2T ≈ −295(35)(1)
[a2,2∗ ≈ 3910(60)(278)] a2,1T ≈ −2950(200)(150)
h1þ ¼ 0:079(32)(20) a2,2T ≈ −6150(800)(700)
h2þ ¼ 0:039(4)(10) h− ¼ 0:13(1)(3)

Table 2. Relative locations of loss features, those predicted by theory, and the percent
difference D = (data/theory – 1). The uncertainties are those propagated from Table 1.

Ratio Data Theory D(%)
a > 0 a2þ=a1þ 22.5(22)(11) 22.7* −1(9)(5)

a2þ=a2∗ 4.40(14)(16) 4.46* −1(3)(4)
a2,1∗ =a2∗ ≈2.42(5)(4) 2.37‡ +2(2)(2)
a2,2∗ =a2∗ ≈6.4(2)(4) 6.6‡ −3(2)(6)

a < 0 a2−=a1− 21.1(11)(24) 22.7* −7(5)(11)
a1,1T =a1− ~0.40(7)(0) 0.43† −6(16)(0)
a1,2T =a1− ≈0.99(12)(0) 0.90† +10(14)(0)
a2,1T =a2− ≈0.47(4)(4) 0.43† +9(9)(9)
a2,2T =a2− ≈0.98(13)(1) 0.90† +8(14)(1)

a → T∞ ja1−j=a1þ 2.5(2)(0) 4.9* −49(5)(0)
ja2−j=a2þ 2.4(1)(4) 4.9* −52(2)(9)
ja1−j=a2∗ 0.49(2)(1) 0.97* −49(2)(1)
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*See (2). †See (7). ‡See (28).
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loss. We ascribe this observation to a high
probability for dimers to undergo vibrational
relaxation collisions that result in kinetic energies
much greater than U. Four-body processes
proceed in a similar fashion (6, 15).

The equation describing the dynamics of
three- and four-body loss is
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where N is the total number of atoms in the trap
at time t, and the brackets denote averages over
the density distribution n (17). For a thermal
gas, the spatial correlation coefficients g(3) and
g(4) are, respectively, 3! and 4!, whereas for a
BEC, both are set to 1 (20, 21). We have ver-
ified that heating from recombination is small
for our short observation times and therefore
omit this effect in our analysis (15, 19). By fitting
the time evolution of the number of atoms to the
solution of Eq. 1, we extract L3 and L4 as a

function of a. Figure S1 shows the loss of atoms
as a function of time in regimes where either L3
or L4 dominates (17). Four-body loss is readily
distinguished from three-body loss by the shape
of the loss curve.

Figure 1 shows the extracted values of L3
across the Feshbach resonance, exhibiting the
expected a4 scaling (22, 23), but with several
dips and peaks punctuating this trend. Two
prominent peaks, labeled a−1 and a−2 in Fig. 1A,
dominate the landscape for a < 0. We attribute

Fig. 1. (A) L3 as a func-
tion of a. Data shown
with purple diamonds
correspond to a thermal
gas withN~106, T~1 to
3 mK (31), and U ~ 6 mK
and were taken with
radial and axial trapping
frequencies wr = (2p)
820 Hz and wz = (2p)
7.3 Hz, respectively. The
remaining data corre-
spond to a BEC with N ~
4 × 105, T < 0.5 TC, U ~
0.5 mK, and wr = (2p)
236Hz.Weadjustwz (17)
to enhance or reduce
three-body loss, where
wz = (2p) 1.6 Hz (red tri-
angles), wz = (2p) 4.6 Hz
(blue circles), and wz =
(2p)16Hz (greensquares).
The black dashed lines
show an a4 scaling, and
the thick black solid lines
are fits to an analytic
theory (2, 17). The thin
green lines show the
square of the energies (in arbitrary units) of the first and second Efimov states,
as predicted from the universal theory (2), where we have fixed the location of the
first Efimov state to overlap with a1−, and the atom-dimer continuum is coincident
with the dashed line for a > 0. Several representative error bars indicating the SE

from the fit are shown (17). (B toD) Detail around the loss features associated with
the atom-dimer and two possible dimer-dimer resonances. The black dotted lines
are fits to eq. S4, whereas the black solid lines include additional super-
imposed Gaussian fits to account for the features not described by eq. S4.
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tures and inelasticity parameters (dimensionless) (17). The fea-
tures a∗2,1 and a∗2,2 are tentatively assigned. The first number
in parentheses characterizes the range over which c2 of the
fit to theory increases by one while simultaneously adjusting
the other parameters in the fit. The second number charac-
terizes the systematic uncertainties in the determination of
a (17).

a > 0 a < 0

a1þ ¼ 119(11)(0) a1− ¼ −298(10)(1)
a2þ ¼ 2676(67)(128) a2− ¼ −6301(264)(740)
a2∗ ¼ 608(11)(7) a1,1T ∼ −120(20)(0)
[a2,1∗ ≈ 1470(15)(38)] a1,2T ≈ −295(35)(1)
[a2,2∗ ≈ 3910(60)(278)] a2,1T ≈ −2950(200)(150)
h1þ ¼ 0:079(32)(20) a2,2T ≈ −6150(800)(700)
h2þ ¼ 0:039(4)(10) h− ¼ 0:13(1)(3)

Table 2. Relative locations of loss features, those predicted by theory, and the percent
difference D = (data/theory – 1). The uncertainties are those propagated from Table 1.

Ratio Data Theory D(%)
a > 0 a2þ=a1þ 22.5(22)(11) 22.7* −1(9)(5)

a2þ=a2∗ 4.40(14)(16) 4.46* −1(3)(4)
a2,1∗ =a2∗ ≈2.42(5)(4) 2.37‡ +2(2)(2)
a2,2∗ =a2∗ ≈6.4(2)(4) 6.6‡ −3(2)(6)

a < 0 a2−=a1− 21.1(11)(24) 22.7* −7(5)(11)
a1,1T =a1− ~0.40(7)(0) 0.43† −6(16)(0)
a1,2T =a1− ≈0.99(12)(0) 0.90† +10(14)(0)
a2,1T =a2− ≈0.47(4)(4) 0.43† +9(9)(9)
a2,2T =a2− ≈0.98(13)(1) 0.90† +8(14)(1)

a → T∞ ja1−j=a1þ 2.5(2)(0) 4.9* −49(5)(0)
ja2−j=a2þ 2.4(1)(4) 4.9* −52(2)(9)
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model are not applicable [34]. In the limit jaj ! !th, we
observe that L3ðaÞ saturates to the same value on both sides
of the resonance. In the opposite limit jaj $ !th, our data
connect to the zero-temperature behavior [20] studied
experimentally in Refs. [22–26]. On the a < 0 side, the
dashed line is the zero-temperature prediction for L3 from
Ref. [20]. We clearly see that finite temperature reduces the
three-body loss rate. On the a > 0 side, temperature effects
become negligible for a < 2000a0, as testified by our mea-
surements performed on a low-temperature Bose-Einstein
condensate (green squares), which agree with the total
recombination rate to shallow and deep dimers calculated
at T ¼ 0 in Ref. [20] (dashed line). The data around uni-
tarity and on the a < 0 side are seen to be in excellent
agreement with our theory Eq. (4) described below.

In order to understand the dependence L3ða; TÞ theoreti-
cally, we employ the S-matrix formalism developed in
Refs. [20,35,36]. According to themethod, at hyperradiiR !
jaj one defines three-atom scattering channels (i ¼ 3; 4; . . . )
for which the wave function factorizes into a normalized

hyperangular part !iðR̂Þ and a linear superposition of the

incoming, R&5=2e&ikR, and outgoing, R&5=2eþikR, hyperra-
dial waves. The channel i ¼ 2 is defined for a > 0 and
describes the motion of an atom relative to a shallow dimer.
The recombination or relaxation to deep molecular states
(with a size of order the van der Waals range Re) requires
inclusion of other atom-dimer channels. In the zero-range
approximation, valid when Re $ Rm ( minð1=k; jajÞ, the
overall effect of these channels and all short-range physics
in general can be taken into account by introducing a single
Efimov channel (i ¼ 1) defined for Re $ R $ Rm: the
wave function at these distances is a linear superposition of

the incoming, !1ðR̂ÞR&2þis0 , and outgoing, !1ðR̂ÞR&2&is0 ,
Efimov radial waves. Here s0 ) 1:00624. The notion
‘‘incoming’’ or ‘‘outgoing’’ is defined with respect to the
long-distance region Rm & R & jaj, so that, for example,
the incoming Efimovwave actually propagates towards larger
R whereas incoming waves in all other channels propagate

towards smaller hyperradii. The matrix sij relates the incom-
ing amplitude in the ith channel with the outgoing one in the
jth channel and describes the reflection, transmission, and
mixing of channels in the long-distance region. This matrix
is unitary and independent of the short-range physics. The
short-range effects are taken into account by fixing the relative
phase and amplitude of the incoming and outgoing Efimov
waves R2" / ðR=R0Þis0 & e2"* ðR=R0Þ&is0 , where R0 is the
three-body parameter and the short-range inelastic processes
are parametrized by "* > 0, which implies that the number
of triples going towards the region of R+ Re is by
the factor e4"* larger than the number of triples leaving this
region [37]. Braaten et al. [36] have shown that for a given
incoming channel i , 2 the probability of recombination
to deeply bound states is Pi ¼ ð1& e&4"* Þjsi1j2=j1þ
ðkR0Þ&2is0e&2"*s11j2 [38]. For a < 0, by using the fact
that s11 is unitary (

P1
i¼1 js1ij2 ¼ 1) and averaging over the

FIG. 3 (color online). (a) 7Li scattering-length dependence of
the three-body rate constant L3ðaÞ for constant T ¼ 5:9ð6Þ #K
(filled and open circles). For small positive a, L3ðaÞ for a low-
temperature condensate is also shown (green squares). The solid
blue line corresponds to our theoretical prediction Eq. (4) for
T ¼ 5:9 #K. The blue range is the same theory for 5.3 to
6:5 #K. The dashed lines show the zero-temperature prediction
for L3ðaÞ [20] fitted to the measurements in Refs. [30,39] with
the parameters "* ¼ 0:21 and R0 ¼ 270a0. The vertical dotted
lines correspond to jaj=!th ¼ 1. The open circles in the range
1500a0 < a< 5000a0 are not corrected for residual evaporation
as our model is not applicable. (b) Logarithmic plot of the a < 0
side, displaying the two Efimov loss resonances.
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FIG. 2 (color online). Temperature dependence of the
three-body loss rate L3. Filled circles, experimental data;
green dashed line, best fit to the data L3ðTÞ ¼ !3=T

2 with !3¼
2:5ð3Þstatð6Þsyst-10&20 ð#KÞ2cm6s&1; the shaded green band

shows the 1$ quadrature sum of uncertainties. Solid line,
prediction from Eq. (5), !3 ¼ 1:52- 10&20 ð#KÞ2 cm6 s&1

with "* ¼ 0:21 from Refs. [30,39].
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loss. We ascribe this observation to a high
probability for dimers to undergo vibrational
relaxation collisions that result in kinetic energies
much greater than U. Four-body processes
proceed in a similar fashion (6, 15).

The equation describing the dynamics of
three- and four-body loss is
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¼ −
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gð4Þ

4!
L4〈n3〉 ð1Þ

where N is the total number of atoms in the trap
at time t, and the brackets denote averages over
the density distribution n (17). For a thermal
gas, the spatial correlation coefficients g(3) and
g(4) are, respectively, 3! and 4!, whereas for a
BEC, both are set to 1 (20, 21). We have ver-
ified that heating from recombination is small
for our short observation times and therefore
omit this effect in our analysis (15, 19). By fitting
the time evolution of the number of atoms to the
solution of Eq. 1, we extract L3 and L4 as a

function of a. Figure S1 shows the loss of atoms
as a function of time in regimes where either L3
or L4 dominates (17). Four-body loss is readily
distinguished from three-body loss by the shape
of the loss curve.

Figure 1 shows the extracted values of L3
across the Feshbach resonance, exhibiting the
expected a4 scaling (22, 23), but with several
dips and peaks punctuating this trend. Two
prominent peaks, labeled a−1 and a−2 in Fig. 1A,
dominate the landscape for a < 0. We attribute

Fig. 1. (A) L3 as a func-
tion of a. Data shown
with purple diamonds
correspond to a thermal
gas withN~106, T~1 to
3 mK (31), and U ~ 6 mK
and were taken with
radial and axial trapping
frequencies wr = (2p)
820 Hz and wz = (2p)
7.3 Hz, respectively. The
remaining data corre-
spond to a BEC with N ~
4 × 105, T < 0.5 TC, U ~
0.5 mK, and wr = (2p)
236Hz.Weadjustwz (17)
to enhance or reduce
three-body loss, where
wz = (2p) 1.6 Hz (red tri-
angles), wz = (2p) 4.6 Hz
(blue circles), and wz =
(2p)16Hz (greensquares).
The black dashed lines
show an a4 scaling, and
the thick black solid lines
are fits to an analytic
theory (2, 17). The thin
green lines show the
square of the energies (in arbitrary units) of the first and second Efimov states,
as predicted from the universal theory (2), where we have fixed the location of the
first Efimov state to overlap with a1−, and the atom-dimer continuum is coincident
with the dashed line for a > 0. Several representative error bars indicating the SE

from the fit are shown (17). (B toD) Detail around the loss features associated with
the atom-dimer and two possible dimer-dimer resonances. The black dotted lines
are fits to eq. S4, whereas the black solid lines include additional super-
imposed Gaussian fits to account for the features not described by eq. S4.

Table 1. Locations (in a0) of three- and four-body loss fea-
tures and inelasticity parameters (dimensionless) (17). The fea-
tures a∗2,1 and a∗2,2 are tentatively assigned. The first number
in parentheses characterizes the range over which c2 of the
fit to theory increases by one while simultaneously adjusting
the other parameters in the fit. The second number charac-
terizes the systematic uncertainties in the determination of
a (17).

a > 0 a < 0

a1þ ¼ 119(11)(0) a1− ¼ −298(10)(1)
a2þ ¼ 2676(67)(128) a2− ¼ −6301(264)(740)
a2∗ ¼ 608(11)(7) a1,1T ∼ −120(20)(0)
[a2,1∗ ≈ 1470(15)(38)] a1,2T ≈ −295(35)(1)
[a2,2∗ ≈ 3910(60)(278)] a2,1T ≈ −2950(200)(150)
h1þ ¼ 0:079(32)(20) a2,2T ≈ −6150(800)(700)
h2þ ¼ 0:039(4)(10) h− ¼ 0:13(1)(3)
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a2þ=a2∗ 4.40(14)(16) 4.46* −1(3)(4)
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a2,1T =a2− ≈0.47(4)(4) 0.43† +9(9)(9)
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FIG. 1: Momentum distributions for the unitary Bose
gas. The dimensionless quantity k4n(k)/NkF , where kF =
(6⇡2hni)1/3, is plotted as a function of k/kF . The data
from the JILA group in Ref. [7] is for two average densities:
hni = 5.5 ⇥ 1012/cm3 (red circles) and 1.6 ⇥ 1012/cm3 (blue
triangles) [7]. The solid curve through the higher-hni data
is a 2-parameter fit obtained by adjusting C2 and C3. The
dashed curve through the lower-hni data is a parameter-free
prediction obtained by scaling C2 and C3 from the higher-hni
fit. The horizontal dotted line is the contribution to both
distributions from C2.
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FIG. 1: Momentum distributions for the unitary Bose
gas. The dimensionless quantity k4n(k)/NkF , where kF =
(6π2⟨n⟩)1/3, is plotted as a function of k/kF . The data
from the JILA group in Ref. [7] is for two average densities:
⟨n⟩ = 5.5 × 1012/cm3 (red circles) and 1.6 × 1012/cm3 (blue
triangles) [7]. The solid curve through the higher-⟨n⟩ data
is a 2-parameter fit obtained by adjusting C2 and C3. The
dashed curve through the lower-⟨n⟩ data is a parameter-free
prediction obtained by scaling C2 and C3 from the higher-⟨n⟩
fit. The horizontal dotted line is the contribution to both
distributions from C2.
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is a 2-parameter fit obtained by adjusting C2 and C3. The
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prediction obtained by scaling C2 and C3 from the higher-⟨n⟩
fit. The horizontal dotted line is the contribution to both
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!   good fit to data (solid line) 
α= 22(1),   β=2.1(1) 

!   αBose≈ 2 αFermi 
!  Within factors 2 of theoretical 

predictions α =10, 32, 12  
[Diederix et al (‘11), Heugten and Stoof 
(‘13), Sykes et al (‘13)] 

F (k) = 89.3 sin[2s0 log(k/⇤)� 1.34]

Efimov effect plays an important role in understanding unitary Bose gas! 
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!   C3	
  is	
  parametrically	
  suppressed	
  for	
  dilute	
  BEC	
  and	
  for	
  unitary	
  thermal	
  gas.	
  	
  
Not	
  for	
  unitary	
  gas	
  below	
  TC!	
  

!   The	
  contacts	
  are	
  unknown	
  for	
  akF	
  >	
  O(1).	
  	
  Well	
  defined?	
  ConEnuous	
  or	
  not?	
  

!   Accessible	
  by	
  JILA	
  group	
  in	
  experiment	
  !	
  	
  	
  

!   No	
  available	
  many-­‐body	
  simulaEons.	
  

?	
  



!   Energies:	
  T=	
  kineEc,	
  U=	
  interacEon,	
  and	
  V=	
  potenEal.	
  

!   T+U–V=0	
  for	
  unitary	
  Fermi	
  gas	
  	
  

!   No	
  C3	
  term	
  in	
  Fermi	
  gas	
  	
  

!   C2	
  term	
  vanishes	
  

!   Verified	
  by	
  JILA	
  group.	
  [PRL	
  2010]	
  

!   T+U–V≠0	
  	
  for	
  unitary	
  Bose	
  gas	
  

!   C3	
  can	
  be	
  determined	
  by	
  measuring	
  T+U	
  and	
  V!	
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FIG. 1: Momentum distributions for the unitary Bose
gas. The dimensionless quantity k4n(k)/NkF , where kF =
(6π2⟨n⟩)1/3, is plotted as a function of k/kF . The data
from the JILA group in Ref. [7] is for two average densities:
⟨n⟩ = 5.5 × 1012/cm3 (red circles) and 1.6 × 1012/cm3 (blue
triangles) [7]. The solid curve through the higher-⟨n⟩ data
is a 2-parameter fit obtained by adjusting C2 and C3. The
dashed curve through the lower-⟨n⟩ data is a parameter-free
prediction obtained by scaling C2 and C3 from the higher-⟨n⟩
fit. The horizontal dotted line is the contribution to both
distributions from C2.

unitarity. They observed that n(k) saturates before the
holding time reaches 0.1 ms, which is significantly shorter
than the atom-loss time scale, 0.6 ms. The distributions
k4n(k) are plotted in Fig. 1 using dimensionless variables
obtained by scaling by kF = (6π2⟨n⟩)1/3. The scaled dis-
tributions for the two densities agree well for k < 1.1 kF ,
but they differ dramatically for k > 1.1 kF , indicating
large scaling violations in the tails of the momentum dis-
tributions. According to Eq. (2), k4n(k) should asymp-
totically approach the constant C2 at large k, but the
distributions in Fig. 1 do not appear to be approaching
a constant for either density.
We assume that the data for k > 1.5 kF in Fig. 1 is

part of the tail of the momentum distribution that is
determined by C2 and C3 according to Eq. (2). Fit-
ting this equation to the momentum distribution for
⟨n⟩ = 5.5 × 1012/cm3 from k = 1.5 kF to k = 3.0 kF ,
we obtain α = 22 and β = 2.1. The value of α agrees
to within a factor of 2 with the previous estimates of
Refs. [18–20]. The fitted curve in Fig. 1 predicts that,
beyond the range of the measured data, k4n(k) should
increase and asymptotically approach C2. Having fit α
and β to the higher-⟨n⟩ data, the tail of the momen-
tum distribution for other values of ⟨n⟩ can be predicted
without any adjustable parameters. The prediction for
⟨n⟩ = 1.6 × 1012/cm3 is shown in Fig. 1 and is in good
agreement with the data. Thus the observed scaling vi-
olations in the tails of the momentum distributions are
explained by the log-periodic dependence of the coeffi-
cient of the C3/k5 term in Eq. (2) on k/κ∗.
Atom loss rate. The loss of 85Rb atoms from a

trapping potential comes from inelastic 2-atom collisions,
which gives the C2 term in Eq. (3), and from inelastic 3-
atom collisions, which gives the C3 term in Eq. (4). The
initial loss rate for trapped atoms determines a time con-
stant τ defined by dN/dt = −(1/τ)N . In the JILA exper-
iment in Ref. [7], τ was determined to be 0.63± 0.03 ms
for ⟨n⟩ = 5.5×1012/cm3. If we assume the dominant loss
mechanism is 2-atom inelastic collisions as in Eq. (3) and
use τ to estimate C2, we obtain α ≈ 5900. This is more
than 2 orders of magnitude larger than the estimates in
Refs. [18–20], which suggests that 2-atom inelastic col-
lisions are unlikely to give a significant contribution to
the observed atom losses. If we assume the dominant
loss mechanism is 3-atom inelastic collisions as in Eq. (4)
and use τ to estimate C3, we obtain β ≈ 1.0. This is
within a factor of 2 of the value we obtained by fitting
the momentum distributions. This makes it plausible
that 3-atom inelastic collisions are the dominant mecha-
nism for the observed atom losses. The time constant τ
is much larger than the time scale for saturation of the
momentum distributions, because the loss rate in Eq. (4)
is suppressed by the factor of η∗ = 0.06.
Other probes of the contacts. The virial theorem

for identical bosons trapped in a harmonic potential was
first derived by Werner [21]:

(T + U)− V = −
h̄2

16πma
C2 −

h̄2

m
C3, (8)

where T , U , and V are the kinetic, interaction, and po-
tential energies, respectively. This implies that C3 at
unitarity can be determined from the difference between
T + U and V and that C2 can be determined from the
slope of that difference as a function of 1/a. The virial
theorem for fermions with two spin states is Eq. (8) with
C3 = 0. This universal relation has been tested by a
group at JILA by measuring T + U , V , and C2 sepa-
rately as functions of a for ultracold trapped 40K atoms
[22]. Similar measurements of T +U and V for identical
bosons near unitarity could be used to determine C2 and
C3.
Another way to determine C2 and C3 is using rf

spectroscopy, in which a radio-frequency signal transfers
atoms to a different hyperfine state. Universal relations
for the rf spectroscopy of identical bosons were derived in
Ref. [12]. The high-frequency tail of the rf transition rate
is the sum of a C2/ω3/2 term and a C3/ω2 term whose
coefficient is a log-periodic function of ω1/2/κ∗, where ω
is the shift in the angular rf frequency relative to that for
a single atom. The C3 term produces scaling violations
in the transition rate at large frequency. Their obser-
vation would add to the compelling theoretical evidence
from scaling violations in the tail of the momentum dis-
tribution that the experiment in Ref. [7] was studying
the unitary Bose gas.
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attractive contact interaction nearly obeys the noninteract-
ing virial equation.

In conclusion, we have measured the integrated contact
for a strongly interacting Fermi gas and demonstrated the
connection between the 1=k4 tail of the momentum distri-
bution and the high frequency tail of rf spectra. Combining
a measurement of C vs ðkFaÞ#1 with measurements of the
potential energy and the release energy of the trapped gas,
we verify two universal relationships [1], namely, the
adiabatic sweep theorem and the generalized virial theo-
rem. These universal relations represent a significant ad-
vance in the understanding of many-body quantum systems
with strong short-range interactions. Furthermore, these

relations could be exploited to develop novel experimental
probes of the many-body physics of strongly interacting
quantum gases.
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FIG. 3. Testing the adiabatic sweep theorem. (Inset) The mea-
sured potential energy, V, and release energy, T þ I, per particle
in units of EF are shown as a function of 1=kFa. (Main) Taking a
discrete derivative of the inset data, we find that 2! dE

d½#1=ðkFaÞ( ())
agrees well with the average value of C obtained from the
measurements shown in Fig. 2 (*).

FIG. 4. Testing the generalized virial theorem. The difference
between the measured release energy and potential energy per
particle T þ I # V is shown as filled circles. This corresponds to
the left-hand side of Eq. (3). Open circles show the right-hand
side of Eq. (3) obtained from the average values of the contact
shown in Fig. 2. The two quantities are equal to within the
measurement uncertainty.
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FIG. 3: A three-body loss resonance for 85Rb. We plot the
three-body event constant K3 vs a. From fitting Eqn. 7 to
the solid points, for which a < 1/kthermal, we extract a− =
−759(6)a0 and η = 0.057(2).

a on the a < 0 side of the Feshbach resonance, we use
absorption imaging to measure the number of atoms and
cloud size as a function of hold time. We then extract
the three-body event rate constant K3, which is defined
by d

dtN = −3K3⟨n2⟩N when all three atoms are lost per
event. In extracting K3, we assume that all of the mea-
sured loss is due to three-body processes and we account
for the observed heating of the gas, which causes addi-
tional decrease in n in time. Our 500 s vacuum-limited
lifetime and previous experiments on 85Rb suggest that
one- and two-body losses can be ignored for this range of
magnetic fields [39]. We fit the measured K3 vs a to the
expected form for an Efimov resonance for non-condensed
atoms [37],

K3 =
4590 sinh(2η)

sin2[s0 ln(a/a−)] + sinh2 η

h̄a4

m
. (7)

Because this expression comes from a T = 0 theory, we
only fit the data for a < 1/kthermal, where kthermal =√
2mkBT/h̄ and kB is Boltzmann’s constant. From the

fit, we extract a− = −759(6) a0 and η = 0.057(2). This
gives κ∗=39(1) µm−1.
To see how the three-body parameter might impact

the many-body physics, we plot the expected frequency
dependence of GRF(ω) in Fig. 4a. Note that GRF(ω) has
a node at |ω| ∼ 2π× 27 kHz and a smaller magnitude at
larger |ω|. Eqn. 5 has a frequency dependence given by
GRF(ω)/ω2, which suggests that the largest contribution
from C3 will be for smaller |ω|. The prediction for the
C3 term (Eqn. 5), like the C2 term (Eqn. 3), is valid for
ω → ∞. For the case of the C2 term, the RF tail arises
from two-body short-range correlations at distances that
are small compared to the interparticle spacing, which
requires ω ≫ h̄n2/3/m. For our typical experimental
parameters, h̄n2/3/m ∼ 1 kHz and this requirement is
always satisfied. However, for the case of C3, the pre-
diction for the C3 tail contribution to the RF tail may

FIG. 4: (a) The frequency dependence of GRF(ω), given our
measured value for κ∗. (b) Frequency dependence of the tail
of the RF spectrum for a = 982 ± 10 a0. The solid line is
a fit of the data (•) to the expected frequency dependence
of the two-body contact C2/N0 including final-state effects.
The dotted line corresponds to the same value of C2/N0, but
ignores final-state effects. For comparison, the fit plus a trial
C3/N0 term of 0.1 µm−2 is shown with the dashed line. Our
measurements are consistent instead with a C3/N0 of zero.
Here the mean density is ⟨n⟩ = 1.0 x1013 cm−3.

have a more limited range of applicability. In particular,
the C3 theory may only be applicable for |ω| > h̄

ma2 [40],
where the frequency dependence makes it less likely to
contribute significantly to the RF tail.
The results of our search for C3 can be seen in Fig. 4b,

where we examine the frequency dependence of the RF
tail for a BEC at a = 982±10 a0. Residual magnetic-field
gradients broaden the central feature in the RF spectrum,
and this limits our data for the tail to |ω| ≥ 2π × 10
kHz. In this frequency regime, we verify that technical
contributions to the signal are negligible by checking that
we detect no signal for positive detunings. We fit the
data to the predicted frequency dependence of the C2

contribution, shown by the solid line. The dotted line is
the same fit but shown without including the final-state
correction 1/β(ω). We can see that our data fit very well
to the expected frequency-dependence for the two-body
contact with final-state effects, and we do not observe
any deviation consistent with a three-body term. Fitting
the data to both contributions gives an upper limit for
C3/N0 of 0.07 µm−2.
In the regime of perturbative interactions, such as as-

sumed in the LHY calculation, one would expect that
the short-range correlations in the BEC are dominated
by two-body effects. This is consistent with our mea-
surements, where no clear signature of three-body effects
is seen in the frequency dependence of the interaction-
induced tail in RF spectroscopy. In general, this paves
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!   Only	
  with	
  C2	
  term	
  
Solid/Do6ed	
  line:	
  	
  rate	
  with/
without	
  final-­‐state	
  interacEon	
  

!   With	
  C2	
  and	
  C3	
  terms	
  
Dashed	
  line:	
  	
  
rate	
  for	
  C3/N0=	
  0.1	
  μm-­‐2	
  

!   C3	
  effect	
  is	
  not	
  idencfied!	
  	
  
upper	
  limit:	
  C3/N0<	
  0.07	
  μm-­‐2	
  

!   Consistent	
  with	
  our	
  esEmate	
  	
  
C3/N0	
  =	
  2.8	
  a4<n2>	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ≈	
  (upper	
  limit)/30	
  

!   C3	
  contribuEon	
  should	
  be	
  visible	
  
for	
  larger	
  a!	
  

a=982	
  a0,	
  <n>=1013	
  cm-­‐3	
  	
  

	
  

ω-­‐3/2	
  

ω-­‐5/2	
  

ω-­‐2	
  



Summary	
  
!   Universal	
  rela9ons	
  for	
  strongly	
  interacEng	
  atoms	
  

!   OPE	
  is	
  powerful	
  

Many-­‐body	
  physics	
  controlled	
  by	
  few-­‐body	
  physics	
  

!   Contacts	
  are	
  central	
  quanEEes	
  

!   C2	
  for	
  Fermi	
  gas	
  with	
  2	
  spin	
  states	
  

!   C2	
  and	
  C3	
  for	
  Bose	
  gas,	
  Fermi	
  gas	
  with	
  2>spin	
  states,	
  and	
  etc.	
  

!   Efimov	
  effect	
  is	
  a	
  key	
  ingredient	
  	
  

to	
  understand	
  unitary	
  Bose	
  gas!	
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FIG. 1: Momentum distributions for the unitary Bose
gas. The dimensionless quantity k4n(k)/NkF , where kF =
(6π2⟨n⟩)1/3, is plotted as a function of k/kF . The data
from the JILA group in Ref. [7] is for two average densities:
⟨n⟩ = 5.5 × 1012/cm3 (red circles) and 1.6 × 1012/cm3 (blue
triangles) [7]. The solid curve through the higher-⟨n⟩ data
is a 2-parameter fit obtained by adjusting C2 and C3. The
dashed curve through the lower-⟨n⟩ data is a parameter-free
prediction obtained by scaling C2 and C3 from the higher-⟨n⟩
fit. The horizontal dotted line is the contribution to both
distributions from C2.
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