Cold Atoms from Few-body Physics: Application of Pionless EFT

Daekyoung Kang

MIT

With Eric Braaten, Lucas Platter, and D. Hudson Smith

Nucleons

Atoms

Dilute neutron matter

Fermions
with 2 spin states
Universal relations
by S. Tan [2005]

2 spin states

1 scattering length

Few nucleon systems

Fermions

with >2 spin states

or

identical bosons

Universal relations

Braaten, DK, Platter

Efimov physics

OPE

pionless EFT/zero-range EFT

Outline

- Strongly interacting ultracold atoms
- Fermions with 2 spin states (2-body physics)
 - Universal relations and Contact
 - Operator Product Expansion (OPE)
- Identical bosons (3-body physics)
 - Efimov physics and Universal relations
 - Recent result on unitary Bose gas

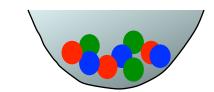
Strongly interacting atoms

What are they?

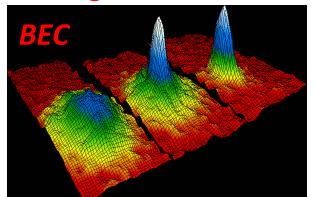
Ultracold atoms with large scattering length (a)

- Ultracold atoms?
 - Alkali atoms: ⁶Li, ⁴⁰K, ⁷Li, ²³Na, ³⁹K, ⁴¹K, ⁸⁵Rb, ⁸⁷Rb, ¹³³Cs
 - Trapped in harmonic potential
 - \bullet Cooled to T< 10⁻⁶ K while T_{QGP}>10¹² K
 - a controlled by B field

Fermi gas with 2 spin states



Bose gas



Strongly interacting atoms

Quantum Mechanics at low energy

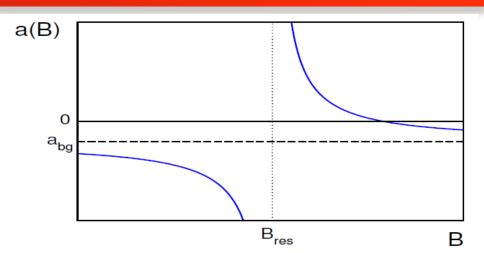
$$f(k) = \frac{1}{-\frac{1}{a} - ik + \frac{r_s}{2}k^2 + \cdots}$$

- At very low energy (k << 1/range),
 f(k) depends only on scattering length a
- For large |a|>>range
 f(k) is nonperturbative for |a|k>1!

Strongly interacting particles

For atoms,

Near Feshbach resonance,
 a varies with the B field!



For nucleons,

- a = -19 fm (n-n) and a = +5.3 fm (n-p spin-triplet)
- a varies with quark masses

 $1/m_{\pi} \approx 1.4 \text{ fm}$

• Tuning U and d masses $\rightarrow a = \pm \infty$ for the both channels

Braaten, Hammer [PRL 2003]

 Constraint on quark mass variation from BBN quark mass → a → binding energies → BBN

Bedaque, Luu, Platter [PRC 2011]

Effective Field Theory

$$\mathcal{L} = \psi_{\sigma}^{\dagger} i \frac{\partial}{\partial t} \psi_{\sigma} - \mathcal{H}$$

$$\mathcal{H} = \frac{1}{2} \nabla \psi_{\sigma}^{\dagger} \cdot \nabla \psi_{\sigma} + g \psi_{1}^{\dagger} \psi_{2}^{\dagger} \psi_{2} \psi_{1}$$

$$\sigma = 1, 2$$

2-body diagrams

(Lippmann-Schwinger eq.)

Renormalization

with hard cutoff Λ :

$$f(k) = -\frac{1}{1/a + ik}$$
$$\frac{1}{a} = \frac{4\pi}{g} + \frac{2}{\pi} \wedge$$

Nonperturbative problem!!

2-body: analytic solution

3- and 4-body: precise numerical solution

Many-body is challenging: Quantum Monte Carlo, Lattice, ...

2-body state

Low energy amplitude

$$f(k) = \frac{1}{-1/a - ik}$$

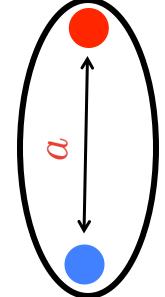
Cross section

$$\sigma(k) = \frac{4\pi}{1/a^2 + k^2}$$

- Molecule (when a>0)
 - Binding energy
 - Size

$$E = -\frac{1}{a^2}$$

$$\sqrt{\langle r^2 \rangle} = \frac{a}{\sqrt{2}}$$



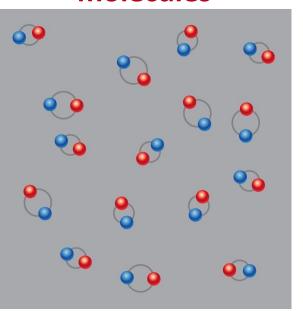
Scale invariance for $a \rightarrow \pm \infty$

Of course, free theory (a->0) is scale invariant!

Many-body states

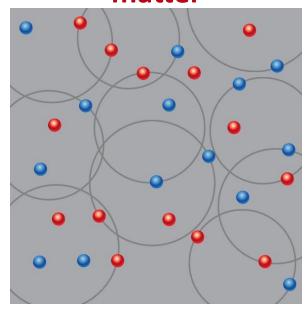
- Identical Bose gas : Bose-Einstein Condensate (a>0)
- Fermi gas with 2 spin states

Condensate of molecules

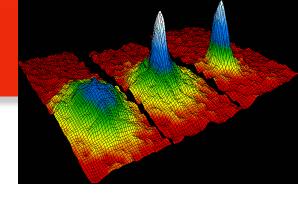


BEC limit ($a << 1/k_F$)

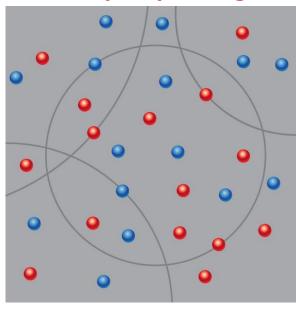
Scale invariant matter



unitary limit (a $\rightarrow \pm \infty$)



Fermi gas with Cooper pairing



BCS limit $(-a << 1/k_F)$

Universal Relations

for fermions with 2 spin states

- Hold for any state of the system
 - e.g. few-body/ many-body, homogeneous/trapped, normal gas/superfluid, ground state/nonzero temperature, etc.
- Involve an extensive property of the system called a contact (C)
- Are determined by 2-body physics

Universal relations

Adiabatic relation: variation of energy with scattering length

$$\frac{dE}{da} = \frac{C}{4\pi a^2}$$

Tan 2005

• Tail of the momentum distribution for large $k >> k_F$

$$n(k) \to C/k^4$$

Tan 2005

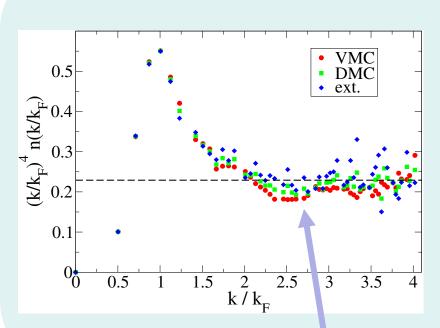
Many more relations involving C

Virial theorem, Pressure relation, Energy relation by Tan [2005], Structure factors by Son + Thompson [PRA 2010], Hu, Liu + Drummond [EPL 2010], Goldberger + Rothstein[arXiv:1012], Correlation for viscosity by Taylor + Randeria [PRA2010], Enss, Haussmann + Zwerger [Annals Phys. 2011], Hard probe by Nishida [arXiv:1110], and more

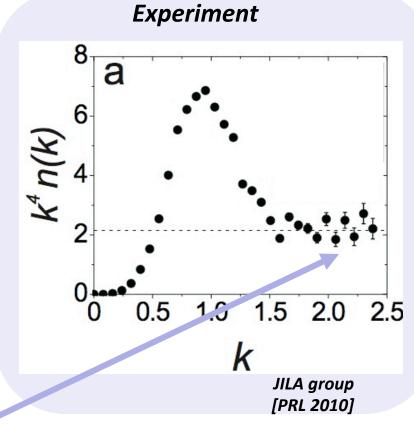
C is a central quantity relating various observables!

Verifying universal relation

Quantum Monte Carlo



Gandolfi, Schmidt, Carlson [PRA 2011]



scaled by Fermi momentum

 $k_F = (3\pi^2 < n >)^{1/3}$

Plateau (1/k4 tail) above 2 k_F!

Universal relations

Adiabatic relation

$$C = 4\pi a^2 \frac{dE}{da}$$

- operational definition
- ullet contact density for given $\,{\cal H}_{
 m int} = g\,\psi_1^\dagger\psi_2^\dagger\psi_2\psi_1^\dagger$

$$\frac{d\mathcal{E}}{da} = \langle \frac{d}{da} \mathcal{H}_{\text{int}} \rangle = \frac{1}{4\pi a^2} \langle g^2 \psi_1^{\dagger} \psi_2^{\dagger} \psi_2 \psi_1 \rangle$$

The contact C

- is an extensive thermodynamic quantity conjugate to 1/a
- measures a probability for 2 atoms being close together
- depends on the state
- depends on scattering length (a), density (n), temperature (T),

• • •

Relations for dimer

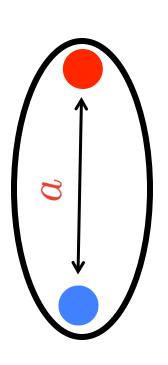
• Dimer contact :
$$C=4\pi a^2 \frac{dE}{da}=rac{8\pi}{a}$$

$$E = -\frac{1}{a^2}$$

Dimer wavefunction: $\widetilde{\psi}(k) = \frac{\sqrt{8\pi/a}}{k^2 + 1/a^2}$

Tail of momentum distribution:

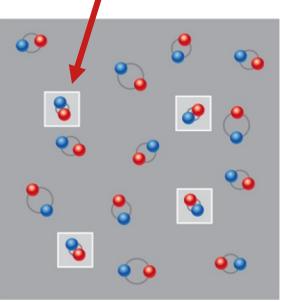
$$n(k) = \tilde{\psi}^{\dagger} \tilde{\psi}(k) \to \frac{8\pi/a}{k^4}$$



Many-body states

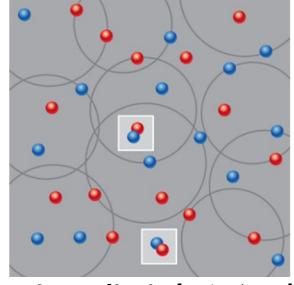
ullet Contact density (C/V)

for homogeneous gas at T=0



BEC limit ($a << 1/k_F$)

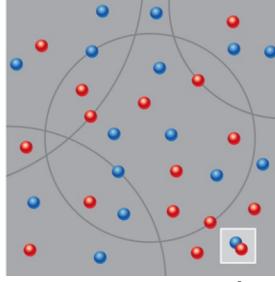
$$8\pi/a \times n/2$$



unitary limit (a $\rightarrow \pm \infty$)

$$10.51(3) \, n^{4/3}$$

Gandolfi, Schmidt, Carlson [PRA 2011]



BCS limit $(-a << 1/k_F)$

$$4\pi^2 a^2 n^2$$

Proof of universal relation

Operator Product Expansion

$$\widehat{O}_A(r)\widehat{O}_B(0) = \sum_i c_i(r)\,\widehat{O}_i(0)$$

lowest scaling dimension operators

$$\psi_1^{\dagger}\psi_1, \ \psi_1^{\dagger}\vec{\nabla}\psi_1, \ \psi_1^{\dagger}i\frac{\partial}{\partial t}\psi_1, \ \psi_1^{\dagger}\nabla^2\psi_1, \ g^2\psi_1^{\dagger}\psi_2^{\dagger}\psi_1\psi_2, \ \cdots$$
3 4 5 6-2=4

- Determine Wilson coeff. by matching few-body matrix elements
 Few-body problem can be solved exactly!
- Operator identity is valid for any states → Universal relation

OPE reveals aspects of many-body physics controlled by few-body physics!!

Operator product expansion

Braaten and Platter [PRL 2008]

$$n(k)=\langle ilde{\psi}_1^\dagger ilde{\psi}_1(k)
angle$$

$$=\int_R \int_r e^{-ik\cdot r} \langle \psi_1^\dagger (R- frac{1}{2}r)\psi_1(R+ frac{1}{2}r)
angle$$

After matching for 1- and 2-atom states ...

$$\psi_{1}^{\dagger}(-\frac{r}{2})\psi_{1}(+\frac{r}{2}) = 1 \times \psi_{1}^{\dagger}\psi_{1}(0)$$

$$\delta(k) \qquad \qquad +\frac{\vec{r}}{2} \cdot [\psi_{1}^{\dagger}\nabla\psi_{1}(0) - \nabla\psi_{1}^{\dagger}\psi_{1}(0)]$$

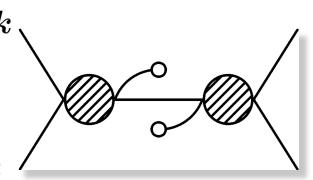
$$\vec{\nabla}\delta(k) \qquad \qquad -\frac{r}{8\pi}g^{2}\psi_{1}^{\dagger}\psi_{2}^{\dagger}\psi_{2}\psi_{1}(0) + \cdots$$

$$\frac{1}{k^{4}} \qquad \qquad \textit{Contact operator}$$

Matching for 2-atom State

$$\psi_1^{\dagger}(-\frac{r}{2})\psi_1(+\frac{r}{2})$$

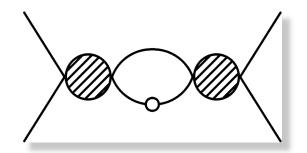
$$-k$$



$$i2\pi f(k)^2 \frac{e^{ikr}}{k}$$

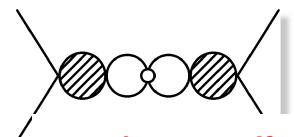
$$\psi_1^{\dagger} \psi_1(0)$$

$$\psi_1^{\dagger} \nabla^j \psi_1(0) - \nabla^j \psi_1^{\dagger} \psi_1(0)$$



$$i2\pi f(k)^2\,rac{1}{k}$$

$$g^2\psi_1^{\dagger}\psi_2^{\dagger}\psi_2\psi_1(0)$$



$$16\pi^2 f(k)^2$$

Wilson Coefficient -> -r /(8π)

Identical Bosons

2- and 3-body physics

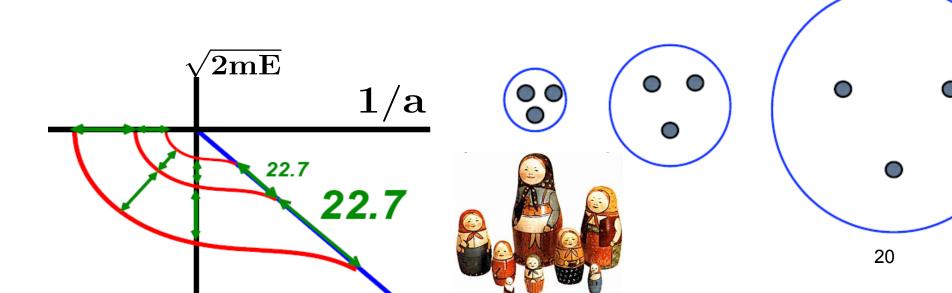
• **2-body** : Similar to fermions except for statistics Scale invariance when $a \to \pm \infty$

3-body: Broken to discrete scale invariance !!!

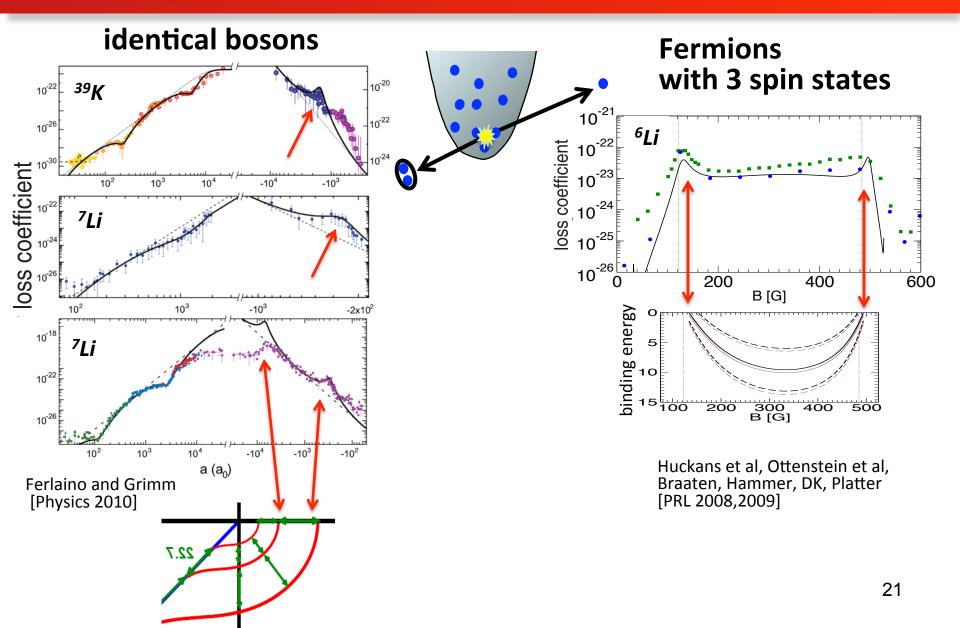
Log-periodic behavior !!!

Efimov physics

• Efimov trimers: $E_{n+1}/E_n = 22.7^2$



Efimov physics in atom loss



EFT for bosons

Interaction

$$\frac{g_2}{4} \left(\psi^{\dagger} \psi \right)^2$$

Integral equation for atom-diatom amplitude

$$s_0 \approx 1.006$$

EFT for bosons

Bedaque, Hammer, and van Kolck [PRL 1999]

interactions

$$\frac{g_2}{4} \left(\psi^{\dagger} \psi \right)^2 + \frac{g_3}{36} \left(\psi^{\dagger} \psi \right)^3$$

integral equation for atom-diatom amplitude

• renormalization $g_3 = -9 \frac{g_2^2}{\Lambda^2} H_{BHvK}$

$$H_{BHvK} = -h_0 \frac{\sin[s_0 \ln(\Lambda/\Lambda_*) - \arctan(1/s_0)]}{\sin[s_0 \ln(\Lambda/\Lambda_*) + \arctan(1/s_0)]}$$

 $h_0 \approx 0.879$

Braaten, DK, Platter [PRL 2011]

Braaten, DK , Platter [PRL 2011]

Universal Relations

from 3-body physics

- Hold for any state of the system
- Involve 2- and 3-body contacts

$$C_2 = \int_R \frac{g_2^2}{4} \langle \psi^{\dagger} \psi^{\dagger} \psi \psi(R) \rangle \qquad C_3 = -\int_R \frac{g_2^2 H'}{8\Lambda^2} \langle \psi^{\dagger} \psi^{\dagger} \psi^{\dagger} \psi \psi(R) \rangle$$

 Are characterized by log-periodic behavior (Efimov physics)

Relations for bosons

Adiabatic relations: 2-body and 3-body contacts

$$a\frac{dE}{da} = \frac{C_2}{8\pi a} \quad \kappa_* \frac{dE}{d\kappa_*} = -2C_3$$

 κ_* is a binding mom. of trimer at unitarity and is chosen as a 3-body parameter.

Tail of n(k) from OPE by

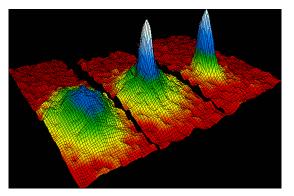
matching for 1-,2-, and 3- body states

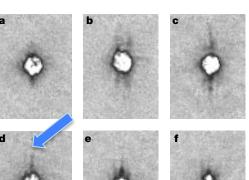
$$n(k)
ightarrow rac{C_2}{k^4} + F(k) rac{C_3}{k^5}$$

$$F(k) = 89.3 \sin[2s_0 \log(k/\kappa_*) - 1.34]$$

Log-periodic !!!

Many-body states





BEC ($a << 1/k_F$)

?? $(a \rightarrow \pm \infty)$

(-a<<1/k_F)
Collapse by
producing "dijets"

Thermal gas at unitarity

Degenerate unitary Bose gas

Atom loss rates

- dilute BEC (a>0)
 - 3-body loss rate: $dn/dt \propto a^4 n^3$ Catastrophic loss rate as a o infinity!
- thermal gas at unitarity

Salomon group and Hadzibabic group [PRL 2013]

ullet 3-body loss rate: $\,dn/dt \propto \lambda_T^4\,n^3$

$$\lambda_T = \sqrt{2\pi\hbar^2/mk_BT}$$

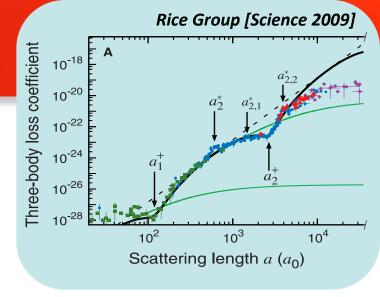
degenerate unitary Bose gas

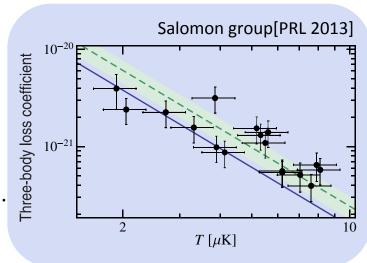
very recently by JILA group [arXiv:1308.3696]

n(k) evolves and saturates before significant loss.

$$t_{loss}$$
= 0.63 ms >> $t_{saturation}$ =0.1 ms

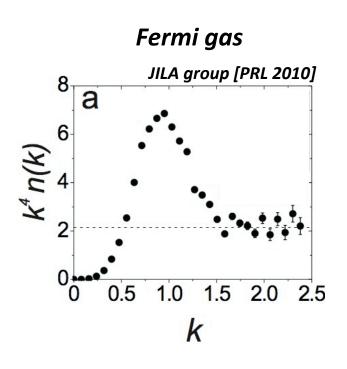
- universal scaling in n(k) and t_{saturation}
- JILA's conclusion: equilibrated metastable state!





Unitary Bose gas

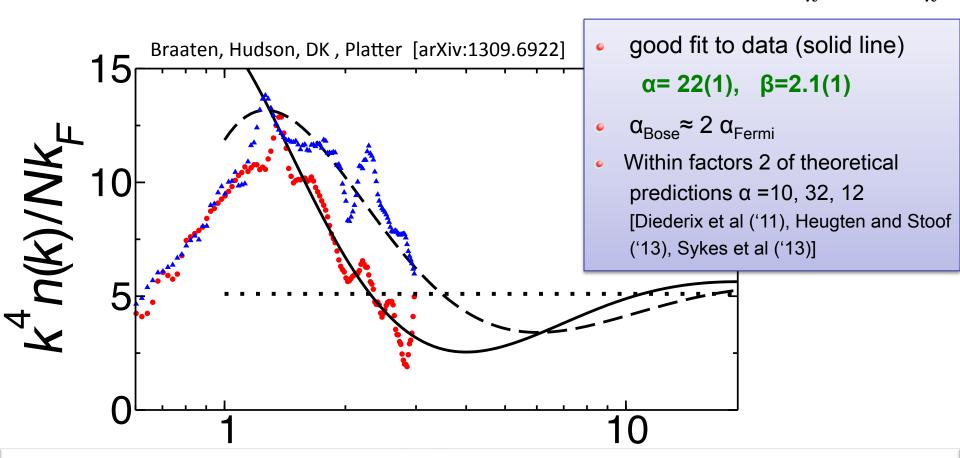
JILA group [arXiv:1308.3696] $< n > = 5.5 \times 10^{12} / \text{cm}^3$, $1.6 \times 10^{12} / \text{cm}^3$ $k^4 n(k)/Nk_F$



- Universal scaling for k < k_F
- Scaling violation for $k > k_F$!
- Why no plateau for $k > 2 k_F$?

- Efimov effect gives log-periodic scaling violations! $\sin[2s_0\log(k/\kappa_*)-1.34]$
 - C₃ term with 1/k⁵ tail. Absent in Fermi gas.
- Contact density at unitarity: $C_2 = \alpha n^{4/3}$ $C_3 = \beta n^{5/3}$
- 2 parameter fit to data in $1.5 < k/k_F < 3$.

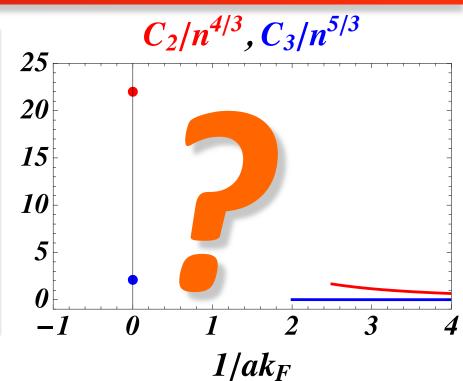
$$n(k)
ightarrow rac{C_2}{k^4} + F(k) rac{C_3}{k^5}$$



Efimov effect plays an important role in understanding unitary Bose gas!

Contact densities

	$C_2/n^{4/3}$	$C_3/n^{5/3}$
dilute BEC (na³<<1)	$16\pi^2 (na^3)^{2/3}$	$2.8 (na^3)^{4/3}$
thermal gas at unitarity $(n\lambda_T^3 << 1)$	$32\pi (n\lambda_T^3)^{2/3}$	$3\sqrt{3}s_0 \left(n\lambda_T^3\right)^{4/3}$
Unitary gas (T <t<sub>C)</t<sub>	22(1)	2.1(1)



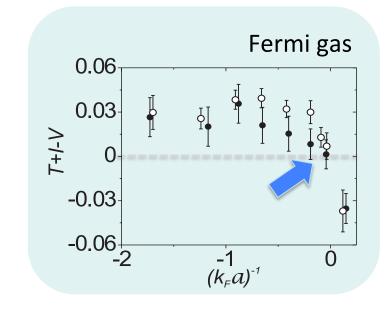
- C_3 is parametrically suppressed for dilute BEC and for unitary thermal gas. Not for unitary gas below T_C !
- The contacts are unknown for $ak_F > O(1)$. Well defined? Continuous or not?
 - Accessible by JILA group in experiment!
 - No available many-body simulations.

Virial theorem

$$(T+U)-V=-\frac{\hbar^2}{16\pi ma} C_2 - \frac{\hbar^2}{m} C_3$$

Werner [PRA 2008]

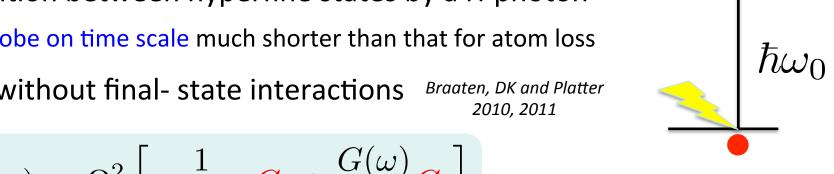
- Energies: T= kinetic, U= interaction, and V= potential.
- T+U-V=0 for unitary Fermi gas
 - No C₃ term in Fermi gas
 - C₂ term vanishes
 - Verified by JILA group. [PRL 2010]



- T+U-V≠0 for unitary Bose gas
 - C₃ can be determined by measuring T+U and V!

Radio frequency spectroscopy

- Transition between hyperfine states by a rf photon
 - Probe on time scale much shorter than that for atom loss
- Rate without final- state interactions 2010, 2011



$$\Gamma(\omega) \to \Omega^2 \left[\frac{1}{4\pi\omega^{3/2}} C_2 + \frac{G(\omega)}{2\omega^2} C_3 \right]$$

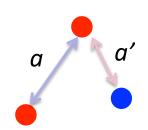
 ω = frequency shift respect to the resonance ω_0

$$G(\omega) = 9.23 - 13.6 \sin[s_0 \ln(\omega/\kappa_*^2) + 2.66]$$

Log-periodic!

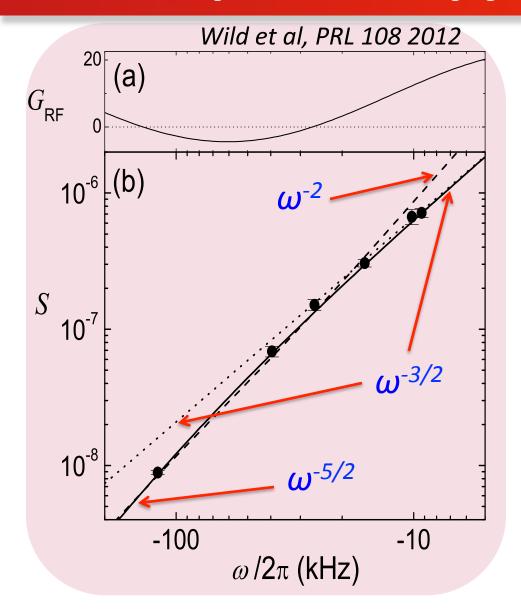
With final-state interactions

$$\Gamma(\omega) \to \Omega^2 \left[\frac{(1/a - 1/a')^2}{4\pi\omega^{3/2} (1/a'^2 + \omega)} C_2 + ? C_3 \right]$$



Wilson coeff. of C₃ needs to be calculated!!

rf spectroscopy for 85Rb BEC



- Only with C₂ term
 Solid/Dotted line: rate with/
 without final-state interaction
- With C_2 and C_3 terms

 Dashed line:

 rate for $C_3/N_0 = 0.1 \mu m^{-2}$
- C_3 effect is not identified! upper limit: $C_3/N_0 < 0.07 \mu m^{-2}$
- Consistent with our estimate $C_3/N_0 = 2.8 \text{ a}^4 < \text{n}^2 >$ $\approx (\text{upper limit})/30$
- C₃ contribution should be visible for larger a!

Summary

- Universal relations for strongly interacting atoms
- OPE is powerful
 - Many-body physics controlled by few-body physics
- Contacts are central quantities
 - C₂ for Fermi gas with 2 spin states
 - C₂ and C₃ for Bose gas, Fermi gas with 2>spin states, and etc.
- Efimov effect is a key ingredient to understand unitary Bose gas!

