### Dark Matter, Dark Forces, and the LHC

#### Ian Lewis

Brookhaven National Laboratory Hooman Davoudiasl, IL 1309.6640

Hooman Davoudiasl, Hye-Sung Lee, IL, Bill Marciano, PRD88 (2013) 015022

Los Alamos National Laboratory
December 4, 2013

### Outline

- Motivation
- Dark Matter Model
- Coupling to Higgs
- 4 LHC Signals for  $H \rightarrow ZZ_d$
- Conclusion

#### Motivation

- Observations indicate that a significant portion of the matter density of the Universe is dark matter (DM).
- Current best measurements: Planck, 1303.5076
  - DM makes up  $\sim 25\%$  of energy density.
  - $\bullet$  Baryons makes up  $\sim 5\%$  of energy density.

#### Motivation

- Observations indicate that a significant portion of the matter density of the Universe is dark matter (DM).
- Current best measurements: Planck, 1303.5076
  - DM makes up  $\sim 25\%$  of energy density.
  - Baryons makes up  $\sim$  5% of energy density.
- Much of the model building focused on the WIMP paradigm:
  - For thermal dark matter need cross section  $\langle \sigma_{ann} v_{rel} \rangle \sim 0.1$  pb.
  - For EW scale particle DM, corresponds to weak scale interactions.
- However, do not know much about DM.
- Lack of evidence at direct detection, indirect detection, and collider experiments motivates additional model building.
- Have been some signals for DM in the ~ 10 GeV range ... although LUX LUX, arXiv:1310.8214 Belanger, Goudelis, Park, Pukhov arXiv:1311.0022 Gresham, Zurek arXiv:1311.2082 Del Nobile, Gelmini, Gondolo, Huh arXiv:1311.4247; Cirigliano, Graesser, Ovanesyan, Shoemaker arXiv:1311.5886
- Despite recent results, low-mass DM still an interesting and phenomenologically rich region to explore.

#### Viable Dark Matter Candidates

- Viable DM candidates need to meet several criteria:
  - Need to be stable on cosmological time scales.
  - Reproduce correct relic abundance.
  - Avoid direct and indirect searches.
  - If thermally produced, need to be in thermal equilibrium with SM at some time in the past.

### Viable Dark Matter Candidates

- Viable DM candidates need to meet several criteria:
  - Need to be stable on cosmological time scales.
  - Reproduce correct relic abundance.
  - Avoid direct and indirect searches
  - If thermally produced, need to be in thermal equilibrium with SM at some time in the past.
- Stability of DM candidate often gauranteed by a discrete symmetry.
- As in SM, may expect stability to come from gauge, Lorentz or accidental symmetries.
- Postulate some gauge symmetry in the dark sector under which DM is charged.
- On general grounds may expect DM to be part of a larger sector.
- Also motivated by anomalies
  - Positron excesses in Fermi, PAMELA, AMS-02...
- Can organize symmetry breaking pattern such that stability is still gauranteed.

### Dark Matter Stability

- Again, take the SM as a guide.
  - Without the fermions,  $W^{\pm}$  interactions always involve two W's



- Even if electromagnetism broken by SU(2) singlet Higgs, would be stable.
- Stability gauranteed by residual symmetry.

### Dark Matter Stability

- Again, take the SM as a guide.
  - Without the fermions,  $W^{\pm}$  interactions always involve two W's



- Even if electromagnetism broken by SU(2) singlet Higgs, would be stable.
- Stability gauranteed by residual symmetry.
- Postulate DM is gauge bosons of a broken non-abelian gauge symmetry Hambye 0811.0172; Hamybe, Tytgat arXiv:0907.1007; Diaz-Cruz, Ma arXiv:1007.2631 ...
- Minimal dark matter sector: Gauge symmetries + Higgses.
- Vector DM also studied in context of
  - Extra-dimensions
     Cheng, Matchey, Schmaltz hep-ph/0204342; Servant, Tait hep-ph/0206071; Cheng, Feng, Matchey hep-ph/0207125 ...
  - Little Higgs Models Cheng, Low hep-ph/0308199 hep-ph/0405243; Birkedal, Noble, Perelstein, Spray hep-ph/0603077

#### **Portals**

- For thermally produced DM need to be in thermal equilibrium with SM at some point.
- To produce correct relic density need DM to annihilate into SM particles.
- Need a portal between DM and SM

#### **Portals**

- For thermally produced DM need to be in thermal equilibrium with SM at some point.
- To produce correct relic density need DM to annihilate into SM particles.
- Need a portal between DM and SM
- Higgs portal:

$$\mathcal{L} \ni \lambda \phi^{\dagger} \phi H^{\dagger} H$$

- $\bullet$   $\phi$  scalar of dark sector, H is SM Higgs doublet.
- Facilitates annihilation  $\chi\chi \to \phi\phi \to SM$
- For gauge boson DM,  $\phi$  can be Higgs that breaks the gauge symmetry.
- Most studied for this possibility.

#### **Portals**

- For thermally produced DM need to be in thermal equlibrium with SM at some point.
- To produce correct relic density need DM to annihilate into SM particles.
- Need some a portal between DM and SM
- Vector portal via kinetic mixing Holdom Phys.Lett. 166B:

$$\mathcal{L}_{kin} = -\frac{1}{4} \left( B^{\mu\nu} B_{\mu\nu} - \frac{2\epsilon}{\cos \theta_W} B_h^{\mu\nu} B_{\mu\nu} + B_h^{\mu\nu} B_{h,\mu\nu} \right)$$

- $B_h$  is U(1) gauge boson of dark sector, B is SM hypercharge.
- After diagonalization into canonical normalization, Bh couples to SM E&M current:

$$\mathcal{L} \ni -e \, \varepsilon B^{\mu}_{h} J^{em}_{u}$$

• Facilitates annihilation  $\chi\chi \to B_h B_h \to SM$ 

### Kinetic Mixing

- Kinetic mixing interesting in its own right.
- Many searches for light gauge boson in low energy fixed target, beam dump,  $e^+e^-$  experiments, and rare meson decays.
  - APEX, HPS, DarkLight at JLab
  - MAMI in Mainz.
  - Past experiments at CERN, KLOE, BaBar,...

### Kinetic Mixing

- Kinetic mixing interesting in its own right.
- Many searches for light gauge boson in low energy fixed target, beam dump,
   e<sup>+</sup>e<sup>-</sup> experiments, and rare meson decays.
  - APEX, HPS, DarkLight at JLab
  - MAMI in Mainz.
  - Past experiments at CERN, KLOE, BaBar,...
- Light vector boson can also explain muon  $g_{\mu} 2$  anomaly Pospelov, arXiv:0811.1030
- Imagine heavy fermions generate the kinetic mixing.



### Dark Matter Model

- Combine non-abelian gauge boson DM with a vector portal.
- Postulate dark sector is composed of  $SU(2)_h \times U(1)_h$  symmetry, with  $U(1)_h$  kinetically mixed with hypercharge.
- As with Standard Model, introduce doublet Higgs  $\Phi$  to break symmetry.
- Assume  $\Phi$  has vev  $(0, v_{\Phi})^T / \sqrt{2}$

### Dark Matter Model

- Combine non-abelian gauge boson DM with a vector portal.
- Postulate dark sector is composed of  $SU(2)_h \times U(1)_h$  symmetry, with  $U(1)_h$  kinetically mixed with hypercharge.
- As with Standard Model, introduce doublet Higgs  $\Phi$  to break symmetry.
- Assume  $\Phi$  has vev  $(0, v_{\Phi})^T/\sqrt{2}$
- Not sufficient:  $SU(2)_h \times U(1)_h \to U(1)_{Q_h}$ 
  - Want to break  $U(1)_{Q_h}$
  - Introduce  $SU(2)_h$  singlet Higgs  $\phi$  with vev  $v_{\phi}/\sqrt{2}$ .

### Dark Matter Model

- Combine non-abelian gauge boson DM with a vector portal.
- Postulate dark sector is composed of  $SU(2)_h \times U(1)_h$  symmetry, with  $U(1)_h$  kinetically mixed with hypercharge.
- As with Standard Model, introduce doublet Higgs  $\Phi$  to break symmetry.
- Assume  $\Phi$  has vev  $(0, v_{\Phi})^T/\sqrt{2}$
- Not sufficient:  $SU(2)_h \times U(1)_h \to U(1)_{Q_h}$ 
  - Want to break  $U(1)_{O_b}$
  - Introduce  $SU(2)_h$  singlet Higgs  $\phi$  with vev  $v_{\phi}/\sqrt{2}$ .
- Before symmetry breaking:

```
Φ: Higgs SU(2)_h doublet with U(1)_h charge 1/2

φ: Higgs SU(2)_h singlet with U(1)_h charge 1/2

W_h^{1,2,3}: Three gauge bosons of SU(2)_h with gauge coupling g_h
```

 $B_h$ : Gauge boson of  $U(1)_h$  with gauge coupling  $g'_h$ , kinetically mixed.

### **Dark Sector Content**

• After symmetry breaking have 4 massive gauge boson fields:

```
"Hidden W": W_h^{\pm} = \frac{1}{\sqrt{2}} \left( W_h^1 \pm i W_h^2 \right) "Hidden Z": Z_h = \cos \theta_h W_h^3 - \sin \theta_h B_h. "Hidden \gamma": \gamma_h = \sin \theta_h W_h^3 + \cos \theta_h B_h. Two Higgs bosons.
```

### **Dark Sector Content**

After symmetry breaking have 4 massive gauge boson fields:

```
"Hidden W": W_h^{\pm} = \frac{1}{\sqrt{2}} \left( W_h^1 \pm i W_h^2 \right) "Hidden Z": Z_h = \cos \theta_h W_h^3 - \sin \theta_h B_h. "Hidden \gamma": \gamma_h = \sin \theta_h W_h^3 + \cos \theta_h B_h. Two Higgs bosons.
```

- $W_h$  is our DM candidate.
  - Similar to SM example without fermions.
  - $W_h$  only show up in pairs at vertices.
  - Stabilized by residual symmetry of broken gauge symmetry
- $Z_h$  and  $\gamma_h$  obtain couplings to SM fermions via kinetic mixing.

# Gauge Boson Masses

- Masses:
  - $M_{W_h} = \frac{1}{2} g_h v_{\Phi}$
  - Identify  $Z_h$ ,  $\gamma_h$  such that  $M_{Z_h} > M_{\gamma_h}$ .
  - Gauge boson masses obey the relation

$$\cos^2 heta_h = rac{M_{W_h}^2 - M_{\gamma_h}^2}{M_{Z_h}^2 - M_{\gamma_h}^2}$$

• Positivity of  $\cos^2 \theta_h$  and  $\sin^2 \theta_h$  enforces the hierarchy  $M_{Z_h} \ge M_{W_h} \ge M_{\gamma_h}$ .

# Gauge Boson Masses

- Masses:
  - $M_{W_h} = \frac{1}{2} g_h v_{\Phi}$
  - Identify  $Z_h$ ,  $\gamma_h$  such that  $M_{Z_h} > M_{\gamma_h}$ .
  - Gauge boson masses obey the relation

$$\cos^2 heta_h = rac{M_{W_h}^2 - M_{\gamma_h}^2}{M_{Z_h}^2 - M_{\gamma_h}^2}$$

- Positivity of  $\cos^2 \theta_h$  and  $\sin^2 \theta_h$  enforces the hierarchy  $M_{Z_h} \ge M_{W_h} \ge M_{\gamma_h}$ .
- In limit  $M_{\gamma_h} \ll M_{W_h}$  and  $v_{\phi} \ll v_{\Phi}$  recover relations:

$$egin{aligned} oldsymbol{M_{\gamma_h}} &pprox rac{1}{2} rac{g_h g_h'}{\sqrt{g_h^2 + g_h'^2}} 
u_{\phi}, \quad oldsymbol{M_{W_h}} &pprox M_{Z_h} \cos heta_h, \quad an heta_h pprox g_h'/g_h \end{aligned}$$

• For rest of talk will take simplifying assumption  $M_{\gamma_b} \ll M_{W_b}$  and  $v_{\phi} \ll v_{\Phi}$ .





- Since  $M_{W_h} \ge M_{\gamma_h}$ , the annihilation channel  $W_h W_h \to \gamma_h \gamma_h$  is always open.
- With the assumption  $M_{\Phi_h}, M_{Z_h} \ge 2M_{W_h}$ , this will be the dominant annihilation channel.





- Since  $M_{W_h} \ge M_{\gamma_h}$ , the annihilation channel  $W_h W_h \to \gamma_h \gamma_h$  is always open.
- With the assumption  $M_{\Phi_h}$ ,  $M_{Z_h} \ge 2M_{W_h}$ , this will be the dominant annihilation channel.
- Have tree level  $W_h W_h \to \Phi_h \to \gamma_h \gamma_h$ 
  - $\Phi_h \gamma_h \gamma_h$  coupling is suppressed by  $v_{\Phi}^4 / v_{\Phi}^4$
- Similarly, after Higgs mixing have  $\phi W_h W_h$  tree-level coupling:
  - Scalar mixing from  $\lambda \phi^{\dagger} \phi \Phi^{\dagger} \Phi$ .
  - For perturbative self-couplings have  $\mu_{\phi} \lesssim \nu_{\phi}$ .
  - Scalar mixing will make a contribution to  $\mu_{\Phi}^2$  of  $\lambda v_{\Phi}^2$ .
  - Hence, assuming little to no tuning, need  $\lambda \lesssim v_{\Phi}^2/v_{\Phi}^2$ .





Relic density given by

$$\Omega_h h^2 \simeq 1.04 \times 10^9 \frac{x_f \,\text{GeV}^{-1}}{\sqrt{g_{\star}} \,M_{\text{Pl}} \langle \sigma_{\text{ann}} v_{\text{rel}} \rangle}$$

• Freeze out temperature set by ( $\kappa = 3$  for gauge bosons)

$$\frac{M_{W_h}}{T_f} = x_f \simeq \ln[0.038(\kappa/\sqrt{x_f g_{\star}}) M_{\rm Pl} M_{W_h} \langle \sigma_{\rm ann} v_{\rm rel} \rangle] \simeq 20$$

- Lorentz structure of triple and quartic gauge couplings identical to SM, with coupling strength now set by  $g_h \sin \theta_h$ .
- The thermally averaged cross section for  $M_{\gamma_b} \ll M_{W_b}$ :

$$\langle \sigma_{\rm ann} \nu_{\rm rel} \rangle \simeq \frac{19 (g_h \sin \theta_h)^4}{72 \pi M_{W_h}^2}$$





- Assume QCD phase transition at  $\Lambda_{OCD} = 200$  MeV.
  - $T_f < \Lambda_{OCD}$ :  $e, v, \gamma$ , and  $\gamma_h$  in thermal equilibrium:  $g_* = 13.75$
  - $T_f > \Lambda_{OCD}$ : include  $\mu, u, d, s$  and gluons:  $g_{\star} = 64.75$
- Requiring that the relic density  $\Omega_h h^2 = 0.12$  and using the typical value  $x_f = 20$ :

$$(g_h \sin \theta_h)^2 \simeq \frac{M_{W_h}}{10 \text{ GeV}} \begin{cases} 2.2 \times 10^{-3}; & T_f \lesssim \Lambda_{QCD} \\ 1.5 \times 10^{-3}; & T_f \gtrsim \Lambda_{QCD} \end{cases}$$

• Will be useful for direct detection calculation. First need coupling to SM fermions...

# Couplings to SM

- In principle can have Higgs mixing in addition to vector portal.
- For simplicity and proof of principle, neglect possible Higgs mixing here.
- Couplings to SM Fermions:
  - As mentioned earlier, can write down a gauge invariant kinetic mixing:

$$\mathcal{L}\ni\frac{\varepsilon}{2\cos\theta_W}B_h^{\;\mu\nu}B_{\mu\nu}$$

• Assuming  $M_{Z_h}$ ,  $M_{\gamma_h} \ll M_Z$ , after diagonalizing the kinetic term, the "neutral" dark gauge bosons develop couplings to SM fermions:

$$\mathcal{L}_{vh} = -\varepsilon e \left[\cos\theta_h \gamma_{h,\mu} - \sin\theta_h Z_{h,\mu}\right] J_{em}^{\mu}$$





- Direct detection mediated via t-channel γ<sub>h</sub>, Z<sub>h</sub> exchange.
- Under our assumptions,  $M_{\gamma_h} \ll M_{Z_h}$ ,  $\gamma_h$  exchange dominates.
- Elastic scattering cross section off a nucleon:

$$\sigma_{\rm el} \simeq \frac{4Z^2 \, \alpha (\epsilon \cos \theta_h)^2 \, (g_h \sin \theta_h)^2 \mu_{\rm r}^2 (W_h, N)}{M_{\gamma_h}^4}$$

 $\mu_r(X,Y) = M_X M_Y / (M_X + M_Y)$  is the reduced mass.



- Since  $\gamma_h$  couples to EM current, interacts with protons and not neutrons.
- Interested in scattering cross section with protons:

$$\sigma_p \simeq rac{4lpha(\epsilon\cos heta_h)^2(g_h\sin heta_h)^2\mu_{
m r}^2(W_h,n)}{M_{\gamma_h}^4}$$

• Obtain usual scattering cross section per nucleon:  $\sigma_n = (Z^2/A^2)\sigma_p$ .



- Since  $\gamma_h$  couples to EM current, interacts with protons and not neutrons.
- Interested in scattering cross section with protons:

$$\sigma_p \simeq \frac{4\alpha (\epsilon \cos \theta_h)^2 (g_h \sin \theta_h)^2 \mu_{\rm r}^2 (W_h, n)}{M_{\gamma_h}^4}$$

- Obtain usual scattering cross section per nucleon:  $\sigma_n = (Z^2/A^2)\sigma_p$ .
- Can use relic density constraint to rewrite  $(g_h \sin \theta_h)^2$  in terms of  $M_{W_h}$ .
- $\sigma_p$  then depends on  $M_{W_h}$  and the ratio  $(\varepsilon \cos \theta_h)^2/M_{\gamma_h}^4$

- $\sigma_p$  as a function of  $M_{W_b}$ .
- Contours of  $(\varepsilon \cos \theta_h)^2 / M_{\gamma_h}^4$



$$\sigma_p = \frac{(\varepsilon \cos \theta_h)^2}{5 \times 10^{-22}} \left(\frac{\text{MeV}}{M_{\gamma_h}}\right)^4 \left(\frac{\mu_r(W_h, n)}{\text{GeV}}\right)^2 \frac{M_{W_h}}{10 \text{ GeV}} \times \begin{cases} 1.2 \times 10^{-41} \text{ cm}^2; & T_f \lesssim \Lambda_{QCD} \\ 8.5 \times 10^{-42} \text{ cm}^2; & T_f \gtrsim \Lambda_{QCD} \end{cases}$$

### Thermal Equlibrium

- Implicit assumption that DM in thermal equilibrium with SM.
- In our case, the hidden photon communicates with SM, so want  $\gamma_h$  in thermal equilibrium for  $M_{\gamma_h} \leq T_f \approx M_{W_h}/20$
- So need dark photon decay rate to keep up with expansion rate at freeze-out of  $W_h$ :

$$rac{M_{\gamma_h}}{T_f} \Gamma_{\gamma_h} \gtrsim H(T_f) = 1.7 g_{\star}^{1/2} T_f^2 / M_{
m Pl}$$

# Thermal Equlibrium

- Implicit assumption that DM in thermal equilibrium with SM.
- In our case, the hidden photon communicates with SM, so want  $\gamma_h$  in thermal equilibrium for  $M_{\gamma_h} \leq T_f \approx M_{W_h}/20$
- So need dark photon decay rate to keep up with expansion rate at freeze-out of  $W_h$ :

$$rac{M_{\gamma_h}}{T_f} \Gamma_{\gamma_h} \gtrsim H(T_f) = 1.7 g_{\star}^{1/2} T_f^2 / M_{
m Pl}$$

• For  $M_{\gamma_h} \leq 1$  GeV:

$$\Gamma_{\gamma_h} \lesssim \frac{4\alpha}{3} (\varepsilon \cos \theta_h)^2 M_{\gamma_h}$$

Get the condition:

$$(\epsilon\cos\theta_{\hbar})^2\left(\frac{\textit{M}_{\textit{N}_{\hbar}}}{\text{MeV}}\right)^2\gtrsim 10^{-12}g_{\star}^{1/2}\left(\frac{\textit{M}_{\textit{W}_{\hbar}}}{10~\text{GeV}}\right)^3$$

# Lower Bound on $M_{\gamma_h}$

- As just seen, after relic density requirement,  $\sigma_p$  depends on  $M_{W_h}$  and the ratio  $(\varepsilon \cos \theta_h)^2/M_{\gamma_h}^4$ .
- Measurement of  $\sigma_p$  and  $M_{W_h}$  then fixes  $(\varepsilon \cos \theta_h)^2/M_{\gamma_h}^4$ .
- Can combine thermal equilibrium requirement with  $\sigma_p$  and  $M_{W_h}$  measurement to obtain a lower bound on  $M_{\gamma_h}$ :

$$\frac{M_{\gamma_h}}{40 \text{ MeV}} \quad \gtrsim \quad \left(\frac{M_{W_h}}{10 \text{ GeV}}\right)^{2/3} \left(\frac{\mu_r(W_h, n)}{1 \text{ GeV}}\right)^{1/3} \times \left(\frac{\sigma_p}{8 \times 10^{-41} \text{ cm}^2}\right)^{-1/6}.$$

- Limit depends on  $M_{\gamma_h} < T_f$ , consistent with bound for  $M_{W_h} \gtrsim 1$  GeV and  $\sigma_n \gtrsim 10^{-43}$  cm<sup>2</sup>.
- Range of  $M_{\gamma_h}$  current low energy searches are exploring.

### Low Energy Searches

- Dark matter searches not only place to search for this model, have a light "Dark photon"
- Robust program looking for light vector bosons weakly coupled to SM:

Beam dump and fixed target experiments
 Bjorken, Essig, Schuster, Toro PRD80 075018; Andreas, Niebuhr, Ringwald PRD86 095019
 A1 Coll. PRL106 251802; APEX Coll. PRL107 191804



- Low energy  $e^+e^-$  eperiments. Reece, Wang JHEP 0907 05 f; Essig, Schuster, Toro PRD80 015003 Batell, Pospelov, Ritz PRD79 115008, PRD80 095024
  - Meson decays Fayet, hep-ph/0702176.

### Low Energy Searches



- New preliminary PHENIX results from RHIC Yorito Yamaguchi's talk at DNP
- For  $M_{W_h} \sim 1 5$  GeV and  $\sigma_p \sim 10^{-43} 10^{-38}$  cm<sup>2</sup>:

$$(\varepsilon \cos \theta_h)^2 \sim 10^{-21} - 10^{-18} (M_{\gamma_h}/\text{MeV})^4$$

Future experiments start probing this parameter region.

### LHC Physics

- Have discussed how to search for these types of models at low energy and DM experiments.
- May also be able to search for light gauge bosons at the LHC.
- Specifically, will focus on Higgs physics in connection with a new dark gauge boson.
- ullet Will neglect dark matter connection, and just assume a new U(1) under which the SM is uncharged.
- Notation change: use  $Z_d$  for a generic dark U(1).
- For LHC searches will focus on M<sub>Zd</sub> ≥ 5 GeV, complementary to previous low energy searches.
- In previous model, had  $M_{\gamma_h} \lesssim M_{W_h} \lesssim M_{Z_h}$ , so have for  $M_{W_h} \sim O(\text{GeV})$  have "neutral" gauge bosons with masses in the sub-GeV range and in the multi-GeV range.

### Couplings to Higgs



Imagine kinetic mixing term originates from integrating out heavy fermions.



• If fermions have Higgs interactions, can induce the effective operators  $(X = \gamma, Z, Z_d)$ :

$$O_{B,X} = c_{B,x} H X_{\mu\nu} Z_d^{\mu\nu}, \quad \tilde{O}_{B,X} = \tilde{c}_{B,X} H \tilde{X}_{\mu\nu} Z_d^{\mu\nu}$$

# **Mass Mixing**

• Can also have direct mass mixing between Z and  $Z_d$  Davoudiasl, Lee, Marciano PRD85 115019:

$$O_{A,X} = c_{A,X} H X_{\mu} Z_d^{\mu}$$

- Here  $X = Z, Z_d$
- For example, consider a two Higgs doublet model with extra SM singlet:

|       | $SU(2)_L$ | $U(1)_{Y}$ | $U(1)_d$ |
|-------|-----------|------------|----------|
| $H_1$ | 2         | 1/2        | 0        |
| $H_2$ | 2         | 1/2        | 1        |
| $S_d$ | 1         | 0          | 1        |

• The vev of  $H_2$  induces a mass mixing between Z and  $Z_d$ :

$$\mathcal{L}_{Mass} = \frac{1}{2} M_{Z^0}^2 Z^0 Z^0 - \Delta^2 Z^0 Z_d^0 + \frac{1}{2} M_{Z_d^0}^2 Z_d^0 Z_d^0$$
$$\Delta^2 = \frac{1}{2} g_d g_Z v_2^2$$

•  $\langle H_{1,2} \rangle = v_{1,2}$ 

# **Mass Mixing**

• This mass mixing induces off-diagonal Higgs couplings:

$$\mathcal{L}_{scalar} = \frac{1}{2}g_Z^2 v H\left(\frac{1}{2}ZZ + \Theta Z Z_d + \frac{1}{2}\Theta^2 Z_d Z_d\right)$$

• Assuming  $|\Delta^2| \ll M_Z M_{Z_d}$  have:

$$\Theta \simeq \frac{\Delta^2}{M_Z^2} \approx \varepsilon_Z \equiv \frac{M_{Z_d}}{M_Z} \delta$$

•  $\delta = \sin \beta \sin \beta_d \quad \tan \beta = v_2/v_1 \quad \tan \beta_d = v_2/v_d$ 

# **Mass Mixing**

• This mass mixing induces off-diagonal Higgs couplings:

$$\mathcal{L}_{scalar} = \frac{1}{2}g_Z^2 v H\left(\frac{1}{2}ZZ + \Theta Z Z_d + \frac{1}{2}\Theta^2 Z_d Z_d\right)$$

• Assuming  $|\Delta^2| \ll M_Z M_{Z_d}$  have:

$$\Theta \simeq rac{\Delta^2}{M_Z^2} pprox arepsilon_Z \equiv rac{M_{Z_d}}{M_Z} \delta$$

- $\delta = \sin \beta \sin \beta_d \quad \tan \beta = v_2/v_1 \quad \tan \beta_d = v_2/v_d$
- From this mixing the  $Z_d$  inherits a component of the SM Goldstone boson.
- For  $M_{Z_d} \ll E_{Z_d}$ , then  $Z_d$  in Higgs decays is longitudinally enhanced:

$$Z_d^{\mu} \rightarrow \partial^{\mu} \phi / M_{Z_d} + O(M_{Z_d} / E_{Z_d})$$

- Hence  $\Theta Z_J^{\mu} \to \partial^{\mu} \phi / M_Z$ :
  - $H \to ZZ_d$  no longer suppressed by  $M_{Z_d}$ .

## **Higgs Branching Ratios**

• Assuming the kinetic mixing comes from heavy fermions with  $m_F \sim \text{few} \times 100 \text{ GeV}$ 

$$|c_{B,X}| \sim |\tilde{c}_{B,X}| \sim \frac{g_w g_d y_F}{16\pi^2 M_Z}$$

- $g_w$  generic weak coupling.
- *y<sub>F</sub>* fermion Yukawa coupling.
- For  $y_F \sim 1$  and  $g_d \approx e$

$$0.1 \mathrm{Br}(H \to \gamma \gamma) \approx \mathrm{Br}(H \to \gamma Z_d) \approx 2 \mathrm{Br}(H \to Z_d Z_d) \approx 10 \mathrm{Br}(H \to Z Z_d)$$

# **Higgs Branching Ratios**

• Assuming the kinetic mixing comes from heavy fermions with  $m_F \sim \text{few} \times 100 \text{ GeV}$ 

$$|c_{B,X}| \sim |\tilde{c}_{B,X}| \sim \frac{g_w g_d y_F}{16\pi^2 M_Z}$$

- $g_w$  generic weak coupling.
- $\bullet$   $y_F$  fermion Yukawa coupling.
- For  $y_F \sim 1$  and  $g_d \approx e$

$$0.1 {\rm Br}(H o \gamma \gamma) pprox {\rm Br}(H o \gamma Z_d) pprox 2 {\rm Br}(H o Z_d Z_d) pprox 10 {\rm Br}(H o Z Z_d)$$

• Mass mixing:

$$Br(H \to ZZ_d) \approx 16\delta^2$$
  $Br(H \to Z_dZ_d) \approx 80\delta^4$ 

- $H \to Z_d Z_d$  is doubly suppressed by  $\delta^4$
- Rare B and K decays suggest  $\delta^2 \lesssim 10^{-5}$  for  $M_{Z_d} \ll 5$  GeV Davoudiasl, Lee, Marciano PRD85 115019
- Low energy parity violation  $\delta^2 < \text{few} \times 10^{-4}$  for all  $M_{Z_d}$  by Davoudiasl, Lee, Marciano PRD85 115019.
- So Br $(H \to ZZ_d)$  can be comparable to Br $(H \to \gamma \gamma) \simeq 2.3 \times 10^{-3}$

## Higgs Decays

• Kinetic mixing motivated operators  $(X_{\mu\nu}Z_d^{\mu\nu}, \tilde{X}_{\mu\nu}Z_d^{\mu\nu})$ 

$$H \rightarrow ZZ_d$$
,  $\gamma Z_d$ ,  $Z_dZ_d$ 

• Mass mixing motivated operators  $(X_{\mu}Z_{d}^{\mu})$  do not have  $\gamma$  decays due to gauge invariance:

$$H \rightarrow ZZ_d$$
,  $Z_dZ_d$ 

- $H \to Z_d Z_d$  doubly suppressed in mass mixing case.
- Will focus on  $H \to ZZ_d$  signals.

### Dark Z decays

- If kinetic mixing is dominant:
  - *Z*<sub>d</sub> couples to SM E&M current.
  - Br( $Z_d \to 2\ell$ ) > Br( $Z \to 2\ell$ ), since no neutrino coupling.
  - For  $M_{Z_d} = 5 10$  GeV, can expect  $Br(Z_d \to 2\ell) \simeq 0.3$
- If mass mixing dominates:
  - $\bullet$   $Z_d$  also couples to SM neutral current.
  - Br( $Z_d \rightarrow 2\ell$ ) smaller than kinetic mixing case.
- Focus on  $H \to ZZ_d \to 4\ell$

#### Parameterization

Mass mixing parameterization:

$$O_{A,Z} = c_{A,Z} H Z_{\mu} Z_d^{\mu}$$

- Motivated by two Higgs doublet example:  $c_{A,Z} = \frac{g}{\cos \theta_{W}} \varepsilon_Z M_Z$
- $\varepsilon_Z = M_{Z_d}/M_Z \, \delta$ , with  $\delta$  a free parameter.
- Kinetic mixing motivated:

$$O_{B,Z} = c_{B,Z} H Z_{\mu\nu} Z_d^{\mu\nu}, \quad \tilde{O}_{B,Z} = \tilde{c}_{B,X} H \tilde{Z}_{\mu\nu} Z_d^{\mu\nu}$$

- $c_{B,Z} = -\frac{g}{2\cos\theta_W} \frac{\kappa_Z}{M_Z}$   $\tilde{c}_{B,Z} = \frac{g}{2\cos\theta_W} \frac{\tilde{\kappa}_Z}{M_Z}$ .

#### Parameterization

• Mass mixing parameterization:

$$O_{A,Z} = c_{A,Z} H Z_{\mu} Z_d^{\mu}$$

- Motivated by two Higgs doublet example:  $c_{A,Z} = \frac{g}{\cos \theta_W} \epsilon_Z M_Z$
- $\varepsilon_Z = M_{Z_d}/M_Z$   $\delta$ , with  $\delta$  a free parameter.
- Kinetic mixing motivated:

$$O_{B,Z} = c_{B,Z} H Z_{\mu\nu} Z_d^{\mu\nu}, \quad \tilde{O}_{B,Z} = \tilde{c}_{B,X} H \tilde{Z}_{\mu\nu} Z_d^{\mu\nu}$$

- $\bullet c_{B,Z} = -\frac{g}{2\cos\theta_W} \frac{\kappa_Z}{M_Z}$
- $\tilde{c}_{B,Z} = \frac{g}{2\cos\theta_W} \frac{\tilde{\kappa}_Z}{M_Z}.$
- For purposes of the collider search, will focus on mass mixing case.
- Will give results in terms of  $\delta^2 \operatorname{Br}(Z_d \to 2\ell)$ 
  - $\delta^2$  is free parameter for Br( $H \to ZZ_d$ )

#### LHC Search

• Work at  $\sqrt{S} = 14$  TeV LHC and with the signal of two same flavor, opposite charge lepton pairs:

$$pp \rightarrow H \rightarrow ZZ_d \rightarrow \ell_1^+ \ell_1^- \ell_2^+ \ell_2^-$$

- Interested in mass range  $M_{Z_d} \sim 5 10$  GeV.
- Complementary to previous low energy searches.
- May expect to appear in  $H \to ZZ^*$  searches already.
  - ATLAS and CMS place lower bound  $M_{Z^*} \ge 12$  GeV in published results.





#### **Event and Detector Simulation**

- Model implemented in MadGraph 5 using FeynRules.
- CTEQ6L pdfs used throughout.
- MadGraph 5 used to simulate both signal and background.
- Apply Gaussian smearing to all events:

$$\frac{\mathsf{\sigma}(E)}{E} = \frac{a}{\sqrt{E}} \oplus b$$

- Following ATLAS a = 10% (50%) and b = 0.7% (3%) for leptons (jets) Voss, Breskin "The CERN Large Hadron Collider, accelerator and experiments"
- Benchmark point:

$$M_{Z_d} = 5 \text{ GeV}$$
  $M_H = 125 \text{ GeV}$   $\delta^2 \text{Br}(Z_d \to 2\ell) = 10^{-5}$   $\kappa_z = \tilde{\kappa}_Z = 0$ 

#### **Event Reconstruction**

- Want full reconstruction of signal to isolate from background.
  - Need to identify which lepton pair originated from where.
  - Z<sub>d</sub> mass not known a priori
  - Calculate invariant mass of all possible same flavor, opposite sign lepton pairs.
  - The lepton pair with mass closest to  $M_Z$  identified as originating from the Z
  - Identify other lepton pair with  $Z_d$ .

#### Transverse Momentum Distributions



- The momentum of Z and  $Z_d$  in Higgs rest frame:  $|\mathbf{p}| \approx 30$  GeV.
- Energy of Z dominated by M<sub>Z</sub>
  - $p_T$  of Z decay products peak near  $M_Z/2$
- Energy of  $Z_d$  dominated by  $|\mathbf{p}|$ 
  - $p_T$  of  $Z_d$  decay products peaked lower  $\lesssim |\mathbf{p}|/2$
  - Not as sharp as  $Z_d$  since is not from a resonance.

## Signal Isolation

Require leptons with central rapidity:

$$p_T^{\ell} > 4 \text{ GeV} \qquad |\eta^{\ell}| < 2.5$$

- Further triggers, following ATLAS ATLAS-CONF-2013-012:
  - One leton with  $p_T^{\ell} > 24$  GeV, OR
  - Two leptons with  $p_T^{\ell} > 13$  GeV each
- To trigger on four leptons, require isolation cut:

$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > 0.3$$

•  $\Delta\eta$  and  $\Delta\phi$  difference in lepton rapidity and azimuthal angel, respectively.

### Signal Isolation

Require leptons with central rapidity:

$$p_T^{\ell} > 4 \text{ GeV} \qquad |\eta^{\ell}| < 2.5$$

- Further triggers, following ATLAS ATLAS-CONF-2013-012:
  - One leton with  $p_T^{\ell} > 24$  GeV, OR
  - Two leptons with  $p_T^{\ell} > 13$  GeV each
- To trigger on four leptons, require isolation cut:

$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > 0.3$$

- $\Delta \eta$  and  $\Delta \phi$  difference in lepton rapidity and azimuthal angel, respectively.
- Originating from a Higgs resonance:

$$|M_{A\ell} - M_H| < 2 \text{ GeV}$$

- $M_{4\ell}$  reconstructed four lepton invariant mass.
- Require the a Z is reconstructed:

$$|M_Z^{\rm rec} - M_Z| < 15 \text{ GeV}$$

# Z<sub>d</sub> resonance peak



- After all previous cuts and energy smearing.
- Sharp drop-off in background below 4 5 GeV.
  - Invariant mass of two massless particles:  $m_{12}^2 = 2E_1E_2(1-\cos\theta_{12})$
  - Isolation cuts and  $p_T$  cuts effectively put lower bounds on invariant mass.
- Use peak to measure  $M_{Z_d}$  and place cut:

$$|M_{Z_d}^{\text{rec}} - M_{Z_d}| < 0.1 M_{Z_d}$$

# Signal and Background Rates

| Channel                              | $e^+e^-$ | $\mu^+\mu^-$ | $2\mu^+$ | $-2\mu^-$ | $2e^{+}$ | -2e-   |
|--------------------------------------|----------|--------------|----------|-----------|----------|--------|
| σ (fb)                               | Sig.     | Bkgrnd       | Sig.     | Bkgrnd    | Sig.     | Bkgrnd |
| No cuts and no energy smearing       | 0.10     |              | 0.051    |           | 0.051    |        |
| Basic cuts + Trigger + Isol.         | 0.049    | 67           | 0.024    | 26        | 0.024    | 26     |
| $+M_{4\ell}+M_Z^{rec}+M_{Z_d}^{rec}$ | 0.043    | 0.030        | 0.022    | 0.017     | 0.022    | 0.014  |
| S/B                                  | 1        | .5           | 1        | .3        | 1        | .5     |

Fraction of total background after basic cuts, trigger, and isolation:

$$2\mu^{+}\mu^{-}$$
 and  $2e^{+}e^{-}$ :  $t\bar{t} \sim 32\%$   $Z \sim 38\%$   $ZZ \sim 26\%$   $e^{+}e^{-}\mu^{+}\mu^{-}$ :  $t\bar{t} \sim 50\%$   $Z \sim 28\%$   $ZZ \sim 12\%$ 

• After  $M_{4\ell}$  and  $M_Z^{\text{rec}}$  cuts dominate backgrounds are  $Z\gamma^*$  and  $H \to ZZ^*$ 

# Observability at Leading Order

 $300 \text{ fb}^{-1}$ :

Exclude  $\delta^2 \gtrsim 4 \times 10^{-6}$ 

Observe  $\delta^2 \gtrsim 7 \times 10^{-6}$ 

Discover  $\delta^2 \gtrsim 1.5 \times 10^{-5}$ 



- Parity violation excluded  $\delta^2 \gtrsim \text{few} \times 10^{-4}$
- For equal  $Br(H \to ZZ_d)$  in kinetic and mass mixing case:

$$\kappa_Z^2 = \tilde{\kappa}_Z^2 = \delta^2/2$$

## Observability

|              | $M_{Z_d} = 5 \text{ GeV}$          |                                                     |                                    |  |  |
|--------------|------------------------------------|-----------------------------------------------------|------------------------------------|--|--|
|              | 2σ (Excl.)                         | 3σ (Obs.)                                           | 5σ (Disc.)                         |  |  |
| No K-factors | $78 \; { m fb}^{-1}$               | $180 \; { m fb}^{-1}$                               | $490 \; \mathrm{fb^{-1}}$          |  |  |
| +K-factors   | $33 \; {\rm fb^{-1}}$              | $75 \; { m fb}^{-1}$                                | $210 \; { m fb^{-1}}$              |  |  |
|              | $M_{Z_d} = 10 \text{ GeV}$         |                                                     |                                    |  |  |
|              |                                    | $M_{Z_d} = 10 \text{ GeV}$                          |                                    |  |  |
|              | 2σ (Excl.)                         | $M_{Z_d} = 10 \text{ GeV}$ $3\sigma \text{ (Obs.)}$ | 5σ (Disc.)                         |  |  |
| No K-factors | 2σ (Excl.)<br>100 fb <sup>-1</sup> | I                                                   | 5σ (Disc.)<br>640 fb <sup>-1</sup> |  |  |

• For equal  $Br(H \to ZZ_d)$  in kinetic and mass mixing case:

$$\kappa_Z^2 = \tilde{\kappa}_Z^2 = \delta^2/2$$

- $M_{Z_d} = 10 \text{ GeV}$ :
  - For our parameterization, signal rate the same as 5 GeV.
  - $|M_{Z_d}^{\text{rec}} M_{Z_d}| < 0.1 M_{Z_d}$  cut looser.
  - Background invariant mass distribution flat.
  - Accept more background and same amount of signal.

- Once discover such a signal, how can we determine what operator coupling is generated from?
- Kinetic mixing operators:

$$O_{B,Z} = c_{B,Z}HZ_{\mu\nu}Z_d^{\mu\nu}, \quad \tilde{O}_{B,Z} = \tilde{c}_{B,Z}H\tilde{Z}_{\mu\nu}Z_d^{\mu\nu}$$

- Z<sub>d</sub> is typically transversely polarized.
- Mass mixing operators:

$$O_{A,Z} = c_{A,Z} H Z_{\mu} Z_d^{\mu}$$

• As discussed earlier, for  $M_{Z_d} \ll M_H$ ,  $Z_d$  typically longitudinally polarized.

- $\hat{z}$  is  $Z_d$  moving direction.
  - Since  $Z_d$  highly boosted,  $\hat{z}$  can be in CM or Lab frame.
- Lepton angular distribution with respect to  $\hat{z}$ :

$$\frac{d\Gamma(Z_d \to \ell^+ \ell^-)}{d\cos \theta} \sim (1 \pm \cos^2 \theta)$$

- Upper sign for transverse polarizations.
- Lower sign for Longitudinal





- After cuts cannot distinguish.
- $\bullet$   $Z_d$  is highly boosted and its decay products collimated.
  - For  $\cos \theta_{\ell} = \pm 1$ , one lepton moving in  $-\hat{z}$ -direction.
    - Boost into lab fame against direction of motion in  $Z_d$ -frame.
  - This configure results in softest leptons.
  - $p_T^{\ell}$  cuts kill  $\cos \theta_{\ell} = \pm 1$ .



- Consider Higgs rest frame:
  - By conservation of momentum, Z and  $Z_d$  back-to-back.
  - By conservation of angular momentum, spins of Z and  $Z_d$  opposite directions.
  - If  $Z_d$  is helicity state, Z is in same helicity state.
  - $p_T$  of leptons from Z peaked in 30-50 GeV range, cut not as drastic.



- Consider Higgs rest frame:
  - By conservation of momentum, Z and  $Z_d$  back-to-back.
  - By conservation of angular momentum, spins of Z and  $Z_d$  opposite directions.
  - If  $Z_d$  is helicity state, Z is in same helicity state.
  - $p_T$  of leptons from Z peaked in 30-50 GeV range, cut not as drastic.
- Use angular distributions of decay products of *Z* to probe coupling.
- Boost order:
  - Lab frame → Higgs rest frame
  - Higgs rest frame  $\rightarrow$  *Z* rest frame.
  - Unlike  $Z_d$  case, necessary to boost to Higgs frame first.



Angular distribution stable against cuts.

#### Conclusions

- Presented a self-interacting DM model:
  - DM consisted of nonabelian gauge bosons.
  - Augmented with U(1) that kinetically mixes with hypercharge.
  - DM stabilized via residual symmetry from the original gauge symmetries.
  - Setup produces a viable low-mass vector DM candidate.
  - Due to hierarchy of masses, can have a sub-GeV gauge boson coupling to SM E&M current.
  - This gauge boson can be searched for at low energy experiments.
  - Proposed low energy experiments will start probing interesting parameter regions for low mass DM.

#### Conclusions

- LHC study of  $H \rightarrow ZZ_d$ 
  - Two classes of operators:
    - "Kinetic" mixing:  $HZ_{\mu\nu}Z_d^{\mu\nu}$ ,  $H\tilde{Z}_{\mu\nu}Z_d^{\mu\nu}$
    - "Mass" mixing:  $HZ_{\mu}Z_{d}^{\mu}$
  - Focused on  $H Z Z_d$  couplings from mass mixing.
  - Can probe mixing parameters down to  $\delta^2 \gtrsim 4 \times 10^{-6}$  with 300 fb<sup>-1</sup> and  $M_{Z_d} = 5$  GeV
  - With our benchmark points can exclude  $Z_d$  with mass 5-10 GeV with  $\sim 30-40$  fb<sup>-1</sup>
  - Discover  $Z_d$  with mass 5-10 GeV with  $\sim 200-250$  fb<sup>-1</sup>
  - Showed how to distinguish between two operators:
    - "Kinetic" mixing results in transversely polarized Z<sub>d</sub>
    - "Mass" mixing in longitudinally polaized  $Z_d$
    - Angular distribution of leptons from Z decay sensitive to this polarization, and stable against cuts.









Explain Newton's First
 Law of Motion in your
 own words





Yakka Foob Mog. Grug Pubbawup zink wattoom Gazork. Chumble Spuzz.



