Toward a self-consistent and unitary nuclear reaction network

M. Paris, L. Brown, G. Hale, A. Hayes, G. Jungman & T. Kawano
Los Alamos National Lab

G. Fuller & E. Grohs
Center for Astrophysics & Space Studies, UCSD

S. Kunieda JAEA

T-2 Nuclear data group seminar 2013 December 11

LA-UR-13-21473. LA-UR-12-25904. LA-UR-13-26088

Outline

- Overview: LANL light nuclear reaction program
- Unitarity: SBBN & beyond, reaction networks, R-matrix, ¹⁷O, ⁹B examples
- Recent related development: EFT \longleftrightarrow R-matrix ($a_c \to 0 \ \forall c$)
- Future work & conclusion

With support from:

- National Nuclear Security Agency
- Institute of Geophysics, Planetary Physics, and Signatures (IGGPS) @ Los Alamos National Lab under a UCSD/LANL Collaborative Research subcontract 2014—2016

^{*}Originally presented at 4th International Conference on Compound Nuclear Reactions, Oct 7-11, 2013, Maresias, Brazil

Light nuclear reaction program @ LANL

Motivation

- \rightarrow Data sets: σ , $\sigma(\theta)$, $A_i(\theta)$, $C_{i,j}$, $K_i^{j'}$, $\Sigma(\gamma)$,... \rightarrow T matrix \rightarrow resonance spectrum
- → *Unitary* parametrization of compound nuclear system
- →Applications: astrophysical, nuclear security, inertial confinement fusion, criticality safety, charge-particle transport, nuclear data (ENDF, ENSDF)

Ab initio

- → Variational MC; Green's function MC
- →GFMC [PRL 99, 022502 (2007)]
 - n-4He phase shifts
 - comparison GFMC/R-matrix
- →challenge: multichannel
 - eg. $n\alpha \rightarrow n\alpha$, $n\alpha \rightarrow dt \& dt \rightarrow dt$

Phenomenology

- →R matrix (2→2 body scatt/reacs)
- →3-body: isobaric models, sequential decay
 - R-Matrix description of particle energy spectra produced by low-energy T + T reactions; w/G. Hale, C. Brune (OU), D. Sayre
 & J. Caggiano (LLNL)

EDA Analyses of Light Systems

Α	System	Channels	Energy Range (MeV)
2	N-N	p+p; n+p, γ+d	0-30 0-40
3	N-d	p+d; n+d	0-4
	⁴ H ⁴ Li	n+t p+ ³ He	0-20
4	⁴ He	p+t n+ ³ He d+d	0-11 0-10 0-10
5	⁵ He	n+α d+t ⁵ He+γ	0-28 0-10
	⁵ Li	$p+\alpha$ d+ 3 He	0-24 0-1.4

Analyses of Light Systems, Cont.

Α	System (Channels)
6	⁶ He (⁵ He+n, t+t); ⁶ Li (d+ ⁴ He, t+ ³ He); ⁶ Be (⁵ Li+p, ³ He+ ³ He)
7	7 Li (t+ 4 He, n+ 6 Li); 7 Be (γ + 7 Be, 3 He+ 4 He, p+ 6 Li)
8	⁸ Be (⁴ He+ ⁴ He, p+ ⁷ Li, n+ ⁷ Be, p+ ⁷ Li [*] , n+ ⁷ Be [*] , d+ ⁶ Li)
9	⁹ Be (⁸ Be+n, d+ ⁷ Li, t+ ⁶ Li); ⁹ B (γ+ ⁹ B, ⁸ Be+p, d+ ⁷ Be, ³ He+ ⁶ Li)
10	10 Be (n+ 9 Be, 6 He+ α , 8 Be+nn, t+ 7 Li); 10 B (α + 6 Li, p+ 9 Be, 3 He+ 7 Li)
11	¹¹ B (α + ⁷ Li, α + ⁷ Li*, ⁸ Be+t, n+ ¹⁰ B); ¹¹ C (α + ⁷ Be, p+ ¹⁰ B)
12	¹² C (⁸ Be+α, p+ ¹¹ B)
13	¹³ C (n+ ¹² C, n+ ¹² C*)
14	¹⁴ C (n+ ¹³ C)
15	¹⁵ N (p+ ¹⁴ C, n+ ¹⁴ N, α + ¹¹ B)
16	¹⁶ O (γ + ¹⁶ O, α + ¹² C)
17	¹⁷ O (n+ ¹⁶ O, α+ ¹³ C)
18	¹⁸ Ne (p+ ¹⁷ F, p+ ¹⁷ F*, α + ¹⁴ O)

26 tabulated analyses

LANL R-matrix light element IAEA standards: status

n+p: no new work since 2008; cross sections in pretty good shape below 30 MeV; main need is extension to higher energies (150-200 MeV), with associated covariances.

n+3He: Some new work, especially for n+3He capture; 3He(n,n)3He scattering data re-worked by Drosg and Lisowski – could be used in a new analysis of the ⁴He system.

n+⁶Li: Some new work on ⁷Li system around 2008 included new LANSCE measurements of ⁶Li(n,t)⁴He differential cross section – was included in ENDF/B-VII.1 above 1 MeV. Cross sections should be re-visited below 1 MeV, although there may not be any new data.

n+¹⁰**B**: No new work since last standards evaluation. New data from Geel, Ohio U. [including first measurement of the (n,p) cross section]. **R**-matrix analysis for ¹¹B system should be extended above 1 MeV

n+12,13C: Considerable new work in the last couple of years. New data for ¹²C(n,n'γ) from Geel, Los Alamos changed the (n,n') cross sections. Isotopic evaluations combined to make more accurate standard evaluation for C-0.

> Notation: X(a,b)Y X-target Y-recoil a-projectile b-detected

^{13,14}C system analyses: σ_T (b) vs. E_n (MeV)

Unitary, self-consistent primordial nucleosynthesis

State of standard big-bang nucleosynthesis (BBN)

- →d & ⁴He abundances: signature success cosmology+nucl astro+astroparticle
 - but there's at least one Lithium (7Li) Problem [6Li too? See: Lind et.al. 2013]
- →coming *precision* observations of d, ⁴He, η, N_{eff} demand new BBN capabilities
- →resolution of ⁷Li problem:
 - observational/stellar astrophysics?
 - ⁷Li controversial anomaly: nuclear physics solution?
 - new physics?

Advance BBN as a tool for precision cosmology

- →incorporate unitarity into strong & electroweak interactions (next slide)
- →couple unitary reaction network (URN) to full Boltzmann transport code
 - neutrino energy distribution function evolution/transport code
 - fully coupled to nuclear reaction network
 - calculate light primordial element abundance for non-standard BBN
 - active-sterile ν mixing
 - massive particle out-of-equilibrium decays→energetic active SM particles
- → Produce tools/codes for nuc-astro-particle community: test new physics w/BBN
 - existing codes are based on Wagoner's (1969) code

Los Alánios

Nuclear reaction network

Single-process (non-unitary) analysis

- $\rightarrow \sigma_{\alpha\beta}(E)\pm\delta\sigma_{\alpha\beta}(E)$ from expt
- \rightarrow fit form (non-res+narrow res) to $\sigma_{\alpha\beta}(E)$
- \rightarrow compute $\langle \sigma v \rangle (T) \rightarrow$ reactivity \rightarrow network
- → NB: norm. systematics can be large
 - ¹⁷O case in 2 slides

Multi-channel (unitary) analysis

- → Construct unitary parametrization
 - R-matrix (Wigner-Eisenbud '47)
- →simultaneous fit of unpolarized/pol'd scatt/reac data→determine *T*(or *S*)matrix
- →determines a unitary reaction network (URN) for analyzed compound systems

Wagoner ApJSuppl '69

Formal unitarity: consequences

$$\begin{cases} \delta_{fi} &= \sum_{n} S_{fn}^{\dagger} S_{ni} \\ S_{fi} &= \delta_{fi} + 2i\rho_{f} T_{fi} \\ \rho_{n} &= \delta(H_{0} - E_{n}) \end{cases}$$

$$T_{fi} - T_{fi}^{\dagger} = 2i \sum_{n} T_{fn}^{\dagger} \rho_{n} T_{ni}$$

NB: unitarity implies optical theorem $\sigma_{tot} = \frac{4\pi}{k} \text{Im } f(0)$; but *not just* the O.T.

Implications of unitarity constraint on transition matrix

1. Doesn't uniquely determine T_{ii}; highly restrictive, however

Elastic: Im $T_{11} = -\rho_1$, $E < E_2$ (assuming T & P invariance)

Multichannel: Im $T = -\rho$

2. Unitarity violating transformations

• cannot scale **any** set: $T_{ij} \to \alpha_{ij} T_{ij}$ $\alpha_{ij} \in \mathbb{R}$

- cannot rotate **any** set: $T_{ij} \to e^{i\theta_{ij}}T_{ij}$ $\theta_{ij} \in \mathbb{R}$
- ★ consequence of linear 'LHS' \(\preceq\) quadratic 'RHS'
- 3. Unitary parametrizations of data provide constraints that experiment may violate
 - ★ normalization, in particular

Observable \propto KF $|T_{fi}|^2$

★ next slide: ¹⁷O compound system

¹⁷O compound system: experimental status

Tempting to conclude that B&H73 was right all along!

¹⁷O compound system: experimental status

Recent Bochum (Harissopulos '05) measurement $^{13}C(\alpha,n)^{16}O$ vs. older ORNL (Bair & Haas '73)

- Subthreshold ½+
 - deep min in σ_T
 - $-S(0) >> S_{FCZ67}(0)$

Tempting to conclude that B&H73 was right all along!

IGPPS IOS Alainos

Basics of R-matrix

■ **Assumptions** (cf. Lane & Thomas RMP '58)

- a) Non-relativistic QM (L&T58); LANL-EDA uses rel. kin.
- b) Two-body channels only ('c'); aux. spectra code
- c) Conservation of N, Z
- d) Finite radius a_c beyond V_{pol}≈0; sharp boundaries

■ Separated pairs, "channels"

- \rightarrow A nucleons \rightarrow (A₁,A₂)
- $\rightarrow c = \{\alpha s_1 m_1 s_2 m_2\} \rightarrow \{\alpha(s_1 s_2) s m_s \ell m_\ell\} \rightarrow \{\alpha(s_1 s_2) s \ell, JM\}$
- → Assume $a_c = a_\alpha$ → many c have same channel in configuration space

Channel surface

- → Consider configuration space of 3A dimensions
- \rightarrow Set of points: $\bigcup_c r_{\alpha(c)} = a_{\alpha(c)}$
- → Surfaces coincide but assumed to have negl. prob.
- → Channels are cylinders normal to channel surf.

Example: 8Be compound system

$$\operatorname{Li}^{7}+p \to \operatorname{Be}^{8*} \to \begin{cases} \operatorname{Li}^{7}+p \text{ (elastic scattering)} \\ \operatorname{Li}^{7*}+p' \text{ (inelastic scattering)} \\ \operatorname{Be}^{7}+n \\ \operatorname{Li}^{6}+d \\ \operatorname{He}^{4}+\operatorname{He}^{4} \\ \operatorname{Be}^{8}+\operatorname{photon, etc. (capture)} \end{cases}$$

UNCLASSIFIED

R-matrix formalism

INTERIOR (Many-Body) REGION (Microscopic Calculations)

ASYMPTOTIC REGION (S-matrix, phase shifts, etc.)

 $(r_{c'}|\psi_{c}^{+}) = -I_{c'}(r_{c'})\delta_{c'c} + O_{c'}(r_{c'})S_{c'c}$

operator with real, discrete spectrum; eigenfunctions in Hilbert space

$$|\psi^{+}\rangle = (H + \mathcal{L}_{B} - E)^{-1} \mathcal{L}_{B} |\psi^{+}\rangle$$

Measurements

$$\mathcal{L}_{B} = \sum_{c} |c|(c) \left(c \left(\frac{\partial}{\partial r_{c}} r_{c} - B_{c} \right), \right)$$

$$\mathbf{T} = \rho^{1/2} \mathbf{O}^{-1} \mathbf{R}_{\mathbf{L}} \mathbf{O}^{-1} \rho^{1/2} - \mathbf{F} \mathbf{O}^{-1}$$

$$\mathbf{S} = 1 + 2\pi i \mathbf{T}$$

$$\mathbf{R}_{L} = [\mathbf{R}_{B}^{-1} - \mathbf{L} + \mathbf{B}]^{-1}$$

$$(\mathbf{r}_c|c) = \frac{\hbar}{\sqrt{2\mu_c a_c}} \frac{\delta(r_c - a_c)}{r_c} \left[\left(\phi_{s_1}^{\mu_1} \otimes \phi_{s_2}^{\mu_2} \right)_s^{\mu} \otimes Y_l^m(\hat{\mathbf{r}}_c) \right]_J^M$$

$$R_{c'c} = (c' \mid (H + \mathcal{L}_B - E)^{-1} \mid c) = \sum_{\lambda} \frac{(c' \mid \lambda)(\lambda \mid c)}{E_{\lambda} - E}$$

Bloch operator $\mathcal{L}_B = \sum |c|(c) \left| \frac{\partial}{\partial r_c} r_c - B_c \right|$ ensures Hermiticity of Hamiltonian restricted to internal region

- R-matrix theory: unitary, multichannel parametrization of (not just resonance) data
- Interior/Exterior regions
 - →Interior: strong interactions
 - →Exterior: Coulomb/nonpolarizing interactions
 - →Channel surface

$$S_c: r_c = a_c$$
 $S = \sum_c S_c$

- R-matrix elements
 - → Projections on channel surface functions $(\mathbf{r}_c|c)$ of Green's function

$$G_B = [H + \mathcal{L}_B - E]^{-1}$$

→Boundary conditions

$$B_c = \frac{1}{u_c(a_c)} \frac{du_c}{dr_c} \Big|_{r_c = a_c}$$

Electromagnetic channels [after Newton & Hale]

One-photon sector of Fock space

→Photon 'wave function'

$$\mathbf{A}_{\mathbf{k}}(\mathbf{r}) = \left(\frac{2}{\pi\hbar c}\right)^{1/2} \sum_{jm} i^{j} \sum_{\lambda', \lambda = e, m, 0} \mathbf{Y}_{jm}^{(\lambda')}(\hat{\mathbf{r}}) u_{\lambda'\lambda}^{j}(r) \mathbf{Y}_{jm}^{(\lambda)}(\hat{\mathbf{k}}) \cdot \chi$$

→Radial part

$$u_{ee}^{j} = -[f'_{j}(\rho) + t_{ee}^{j}h_{j}^{+'}(\rho)] \qquad u_{0e}^{j} = -\frac{\sqrt{j(j+1)}}{\rho}[f_{j}(\rho) + t_{e0}^{j}h_{j}^{+}(\rho)]$$

$$u_{mm}^{j} = [f_{j}(\rho) + t_{mm}^{j}h_{j}^{+}(\rho)] \qquad u_{0m}^{j} = u_{me}^{j} = u_{em}^{j} = 0$$

→Photon channel surface functions

$$(\mathbf{r}_c|c) = \left(\frac{\hbar c}{2\rho_{\gamma}}\right)^{1/2} \frac{\delta(r_{\gamma} - a_{\gamma})}{r_{\gamma}} \left[\phi_{s\nu} \otimes \mathbf{Y}_{jm}^{(e,m)}(\hat{\mathbf{r}}_{\gamma})\right]_{JM}$$

- Photon 'mass': $\hbar k_{\gamma}/c$
- →R-matrix definition preserved

$$(c'|\psi) = \sum_{c} R_{c'c}^{B}(c|\frac{\partial}{\partial r_c}r_c - B_c|\psi)$$

R-matrix definition preserved
$$(c'|\psi) = \sum_{c} R_{c'c}^{B}(c|\frac{\partial}{\partial r_{c}}r_{c} - B_{c}|\psi)$$

$$R_{L} = [\mathbf{R}_{B}^{-1} - \mathbf{L} + \mathbf{B}]^{-1}$$

$$\mathbf{L} = \rho \mathbf{O'O}^{-1}$$

$$F = \operatorname{Im} \mathbf{O}$$

Implementation in EDA

- EDA = Energy Dependent Analysis
 - \rightarrow Adjust $E_{\lambda} \& \gamma_{c\lambda}$
- Any number of two-body channels
 - → Arbitrary spins, masses, charges (incl. mass zero)
- Scattering observables
 - → Wolfenstein trace formalism
- Data
 - →Normalization
 - →Energy shifts
 - →Energy resolution/spread
- Fit (rank-1 var. metric) solution

$$\chi_{EDA}^2 = \sum_{i} \left[\frac{nX_i(\mathbf{p}) - R_i}{\delta R_i} \right]^2 + \left[\frac{nS - 1}{\delta S/S} \right]^2$$

Covariance determined

IGPPS ANS SE

¹⁷O analysis configuration

Channel	a _c (fm)	I _{max}
n+ ¹⁶ O	4.3	4
α +13C	5.4	5

Reaction	Energies (MeV)	# data points	Data types
¹⁶ O(n,n) ¹⁶ O	$E_n = 0 - 7$	2718	σ_T , $\sigma(\theta)$, $P_n(\theta)$
$^{16}O(n,\alpha)^{13}C$	$E_n = 2.35 - 5$	850	σ_{int} , $\sigma(\theta)$, $A_n(\theta)$
$^{13}\text{C}(\alpha, n)^{16}\text{O}$	$E_{\alpha} = 0 - 5.4$	874	σ_{int}
$^{13}\mathrm{C}(\alpha,\alpha)^{13}\mathrm{C}$	$E_{\alpha} = 2 - 5.7$	1296	$\sigma(\theta)$
total		5738	8

R-matrix analyses support B&H73/Heil08

LANL R-matrix fit to Bair & Haas '73

- \rightarrow two-channel fit: ($^{16}O,n$) & ($^{13}C,\alpha$)
 - $\ell_n = 0, \dots, 4; \quad \ell_\alpha = 0, \dots, 5$
- \rightarrow data included: $\sigma_T(E)$
 - ${}^{16}O(n,n)$, ${}^{16}O(n,\alpha)$, ${}^{13}C(\alpha,n)$
 - $\sigma_T, \sigma(\theta), P_n(\theta), \sigma_{\text{int}}$
 - χ^2 minimization: normalizations float
- →Test Hariss05 data
 - remove B&H73/Heil08 data
 - fix Hariss05 norm to unity
 - unable to obtain fit with realistic χ^2 (< 2.0)
 - due to tension with $\sigma_{\scriptscriptstyle T}$
 - now allow Hariss05 norm to float
 - requires scale factor of ~1.5, consistent with B&H73

Kunieda/Kawano analysis [ND2013]

- →similar to LANL R-matrix(EDA)/ENDF/B-VI.8
- →with independent R-matrix code
- →KK give uncertainty analysis: see ND2013 proceedings in *Nucl. Data Sh.*
- → Right to conclude B&H73 data correct on the basis of unitarity.

Credit: S. Kunieda

UNCLASSIFIED

A nuclear physics solution to the BBN ⁷Li problem?

Primordial nucleosynthesis

- → Probes physics of early universe
- →Big-bang nucleosynthesis: D,⁴He,⁷Li abundances
- →D,⁴He abundances agree with theo/expl uncertainties
- →At η_{wmap} (CMB) 7 Li/H $|_{BBN}$ ~ $(2.2-4.2)^{*7}$ Li/H $|_{halo^{*}}$
- →Discrepancy ~ 4.5-5.5σ→ the "Li problem"

Resonant destruction ⁷Li

- → Prod. mass 7 "well understood"; destruction not
- → Cyburt & Pospelov *arXiv:0906.4373; IJMPE, 21(2012)*
 - 7 Be(d,p) $\alpha\alpha$ & 7 Be(d, γ) 9 B resonant enhancement
 - Identify 9B E_{5/2+} ${}^{\sim}16.7$ MeV ${}^{\sim}$ E_{thr}(d+ 7 Be)+200 keV
 - Near threshold
 - $(E_r, \Gamma_d)^2 (170-220, 10-40)$ keV solve Li problem
- → Chakraborty, Fields & Olive PRD83, 063006 (2011)
 - More general approach: A=8,9,10 & 11
 - Identify as possibly important: ⁹B, ¹⁰B, ¹⁰C
- → 'Large' widths
 - Both conclude "large channel radius" required

NB: both approaches assume validity of TUNL-NDG tables

UNCLASSIFIED

⁹B analysis: included data

- ⁶Li+³He elastic Buzhinski et.al., Izv. Rossiiskoi Akademii Nauk, Ser.Fiz., Vol.43, p.158 (1979)
 - → Differential cross section
 - \rightarrow 1.30 MeV < E(³He) < 1.97 MeV
- ⁶Li+³He → p+⁸Be* Elwyn et.al., Phys. Rev. C 22, 1406 (1980)
 - →Integrated cross section
 - →Quasi-two-body, excited-state, summed final channel
 - \rightarrow 0.66 MeV < E(³He) < 5.00 MeV
- ⁶Li+³He → d+⁷Be D.W. Barr & J.S. Gilmore, unpublished (1965)
 - →Integrated cross section
 - \rightarrow 0.42 MeV < E(³He) < 4.94 MeV
- $^{6}\text{Li+}^{3}\text{He} \rightarrow \gamma + ^{9}\text{B}$ Aleksic & Popic, Fizika 10, 273-278 (1978)
 - →Integrated cross section
 - \rightarrow 0.7 MeV < E(³He) < 0.825 MeV
 - →New to ⁹B analysis
- New evaluation
 - →Separate ⁸Be* states
 - <u>2</u>⁺<u>@200 keV [16.9 MeV]</u>, 1⁺<u>@650 keV [17.6 MeV]</u>, <u>1</u>⁺<u>@1.1 MeV[18.2 MeV]</u>
 - \rightarrow n+8B: E_{thresh}(3He) = 3 MeV
 - →Simultaneous analysis with ⁹Be mirror system

Data accessed via EXFOR/CSISRS database (C4 format)

R-matrix configuration in EDA code

Hadronic channels (in blue, not included)

$A_1A_2^{\pi}$	$^3\mathrm{He}^6\mathrm{Li}^4$	+(1)	$p^8 \mathrm{Be}^*$	(+(2)		$d^7 \mathrm{Be}^-$ (3)	
ℓ S	$\frac{3}{2}$	$\frac{1}{2}$	$\frac{5}{2}$	$\frac{3}{2}$	$\frac{5}{2}$	$\frac{3}{2}$	$\frac{1}{2}$
0	$^{4}S_{3/2}$	$^{2}S_{1/2}$	$^{6}S_{5/2}$	$^{4}S_{3/2}$	$^{6}S_{5/2}$	$^{4}S_{3/2}$	$^{2}S_{1/2}$
1	$^4P_{5/2,3/2,1/2}$	$^{2}P_{3/2,1/2}$	$^{6}P_{7/2,5/2,3/2}$	$^4P_{5/2,3/2,1/2}$	$^{6}P_{7/2,5/2,3/2}$	$^4P_{5/2,3/2,1/2}$	$^{2}P_{3/2,1/2}$
2	$ ^4D_{7/2,5/2,3/2,1/2} $	$^{2}D_{5/2,3/2}$			$ ^6D_{9/2,7/2,5/2,3/2,1/2} $	$^4D_{7/2,5/2,3/2,1/2}$	$^{2}D_{5/2,3/2}$
		400	\	10.7			10 E

 $E_{thr}(CM, MeV)$

16.7

16.5

 $\rightarrow E_1^{3/2}, M_1^{5/2}, M_1^{3/2}, M_1^{1/2}, E_1^{5/2}, E_1^{1/2}$ Electromagnetic channel: $\gamma + ^9B$

1	1	4s	3/2	7.50000000f	20	1	4p	1/2	7.50000000f
2	1	4d	3/2	7.5000000f	21	1	2p	1/2	7.50000000f
3	1	2d	3/2	7.5000000f	22	2	4p	1/2	5.50000000f
4	2	4s	3/2	5.5000000f	23	3	2s	1/2	7.0000000f
5	3	6p	3/2	7.0000000f	24	4	М1	1/2	50.0000000f
6	3	4p	3/2	7.0000000f	25	1	4d	7/2	7.50000000f
7	3	2p	3/2	7.0000000f	26	3	6p	7/2	7.0000000f
8	4	E1	3/2	50.0000000f	27	1	4d	5/2	7.50000000f
9	1	4p	5/2	7.5000000f	28	1	2d	5/2	7.50000000f
10	2	6p	5/2	5.5000000f	29	2	6s	5/2	5.50000000f
11	2	4p	5/2	5.5000000f	30	3	6p	5/2	7.0000000f
12	3	6s	5/2	7.0000000f	31	3	4p	5/2	7.0000000f
13	4	M1	5/2	50.0000000f	32	4	E1	5/2	50.0000000f
14	1	4p	3/2	7.5000000f	33	1	4d	1/2	7.50000000f
15	1	2p	3/2	7.5000000f	34	1	2s	1/2	7.50000000f
16	2	6p	3/2	5.5000000f	35	3	4p	1/2	7.0000000f
17	2	4p	3/2	5.5000000f	36	3	2p	1/2	7.0000000f
18	3	4s	3/2	7.0000000f	37	4	E1	1/2	50.0000000f
19	4	M1	3/2	50.0000000f	38	2	6p	7/2	5.5000000f

Observable fit: ³He+⁶Li elastic DCS

UNCLASSIFIED

Observable fit: ⁶Li(³He,p)⁸Be* integrated x-sec

Observable fit: ⁶Li(³He,d)⁷Be integrated x-sec

Observable fit: ⁶Li(³He,γ)⁹B integrated x-sec

Analysis result: resonance structure

16.46539 1/2-	768.46 0.14	 1369	,	-0.2054	Strength 0.06 weak
· ·	0.14				
17 11017 1/0		0.5109	_0 6771F_0/	0 7664	
17.11317 1/2-	0.71 6.0		-0.0//IE-04	0.7664	1.00 strong
17.20115 5/2-	871.63	0.5989	-0.4358	0.8984	0.40 weak
17.28086 3/2-	147.78	0.6785	-0.0739	1.0178	0.77 strong
17.66538 5/2+	33.33	1.0631	-0.0167	1.5947	0.98 strong
17.83619 7/2+ 2	036.21	1.2339	-1.0181	1.8509	0.15 weak
17.84773 3/2-	42.52	1.2454	-0.0213	1.8681	0.97 strong
18.04821 3/2+	767.11	1.4459	-0.3836	2.1689	0.54 weak
18.42292 1/2+ 5	446.32	1.8206	-2.7232	2.7309	0.03 weak
18.67716 1/2- 10	278.41	2.0749	-5.1392	3.1124	0.15 weak
19.60923 3/2- 1	478.22	3.0069	-0.7391	4.5104	0.52 weak

S-matrix pole & residue Hale, Brown, Jarmie PRL 59 '87

$$\mathcal{E}_{\lambda'\lambda} = E_{\lambda}\delta_{\lambda'\lambda} - \sum_{c} \gamma_{c\lambda'} [L_c(E) - B_c] \gamma_{c\lambda}$$
$$E_0 = E_r - i\Gamma/2 \quad \text{residue: } i\rho_0 \rho_0^T$$

NB: no strong resonance seen ~100 keV of ³He+⁶Li threshold

strength =
$$\frac{1}{\Gamma} \rho_0^{\dagger} \rho_0 = \frac{1}{\Gamma} \sum_c \Gamma_c$$

$$\rho_{0c} = \left(\frac{2k_{0c}a_c}{N}\right)^{1/2} \mathcal{O}_c^{-1}(k_{0c}a_c) \sum_{\lambda} \gamma_{c\lambda}(\lambda|\mu_0)$$

$$N = \sum_{\lambda'\lambda} (\lambda |\mu_0) (\lambda' |\mu_0) \left[\delta_{\lambda'\lambda} + \sum_c \gamma_{c\lambda'} \frac{\partial L_c}{\partial E} \Big|_{E=E_0} \gamma_{c\lambda} \right]$$

$$L_c = r_c \frac{\partial \mathcal{O}_c}{\partial r_c} \mathcal{O}_c^{-1} \Big|_{r_c = a_c}$$

UNCLASSIFIED

Analysis result: resonance structure

Ex(MeV)	Jpi	Gamma(keV)	Er(MeV)	<pre>ImEr(MeV)</pre>	E(3He)	Strength
16.46539	1/2-	768.46	 1369	-0.3842	-0.2054	0.06 weak
17.11317	1/2-	0.14	0.5109	-0.6771E-04	0.7664	1.00 strong
17.20115	5/2 -	871.63	0.5989	-0.4358	0.8984	0.40 weak
17.28086	3/2-	147.78	0.6785	-0.0739	1.0178	0.77 strong
17.66538	5/2+	33.33	1.0631	-0.0167	1.5947	0.98 strong
17.83619	7/2+	2036.21	1.2339	-1.0181	1.8509	0.15 weak
17.84773	3/2-	42.52	1.2454	-0.0213	1.8681	0.97 strong
18.04821	3/2+	767.11	1.4459	-0.3836	2.1689	0.54 weak
18.42292	1/2+	5446.32	1.8206	-2.7232	2.7309	0.03 weak
18.67716	1/2-	10278.41	2.0749	-5.1392	3.1124	0.15 weak
19.60923	3/2-	1478.22	3.0069	-0.7391	4.5104	0.52 weak

TUNL-NDG/ENSDF parameters

NB: no strong resonance seen ~100 keV of 3He+6Li threshold

$E_{\rm x}$ a (MeV \pm keV)	$J^{\pi}; T$	Γ _{c.m.} (keV)	Decay
16.024 ± 25	$T = \left(\frac{1}{2}\right)$	180 ± 16	
$16.71 \pm 100^{\text{ h}}$	$\left(\frac{5}{2}^+\right);\left(\frac{1}{2}\right)$		
17.076 ± 4	$\frac{1}{2}^-; \frac{3}{2}$	22 ± 5	$(\gamma, {}^{3}{\rm He})$
17.190 ± 25		120 ± 40	p, d, ³ He
$17.54 \pm 100^{\text{ h,i}}$	$(\frac{7}{2}^+); (\frac{1}{2})$		
$17.637 \pm 10^{\text{ i}}$		71 ± 8	$p, d, {}^{3}He, \alpha$

The zero channel radius limit of R-matrix theory?!

 $\begin{array}{c} \text{Hale, Brown \& Paris, Phys. Rev. C, arXiv:1308:0349} \\ \\ \text{Asymptotic states} \\ \\ \text{EFT} \\ \\ \\ \text{Resonant states} \end{array}$

- 'Conventional' R-matrix (left)
 - \rightarrow Consider the limit $a_{\alpha} \rightarrow 0$
- Continued R-matrix theory (center)
 - → Interior region: set of measure zero
- Effective field theory* (right)
 - → local Lagrangian (non-relativistic) field theory of stable and unstable particles

Next slides:

- → Consider ¹S₀ np scattering
- → study a_c dependence of R-matrix parameters

Brown & Hale, Phys. Rev. C, arXiv:1308.0348

- → Consider dt→nα R-matrix in zero channel radius limit
- → Compare dt→nα R-matrix to EFT

*Old fashioned EFT w/o power counting

Slide 28

UNCLASSIFIED

Zero channel radius limit: ¹S₀ np scattering

$$S = e^{-2ika} \frac{1 + ikaR}{1 - ikaR} \qquad R = \frac{\gamma_{\lambda}^{2}(a)}{E_{\lambda}(a) - E} \qquad k \cot \delta = \frac{E_{\lambda} - E + kg^{2} \tan ka}{g^{2} - (E_{\lambda} - E)\frac{1}{k} \tan ka}$$

$$\rho = ka \qquad \qquad k = \sqrt{2\mu E} \qquad \qquad g^{2} = a\gamma_{\lambda}^{2}$$

Effective range expansion: $a_0 = a - \frac{g^2}{E_{\lambda}}$ $r_0 = \frac{2a^3 E_{\lambda}^2/3 - 2a^2 E_{\lambda} g^2 + 2ag^4 - g^2 \hbar^2/\mu}{(g^2 - aE_{\lambda})^2}$

$$r_0 = \frac{2a^3 E_{\lambda}^2 / 3 - 2a^2 E_{\lambda} g^2 + 2ag^4 - g^2 \hbar^2 / \mu}{(g^2 - aE_{\lambda})^2}$$

$$E_{\lambda}(a) = \frac{\hbar^2(a_0 - a)}{2\mu[r_0 a_0^2 / 2 - a^3 / 3 - aa_0(a_0 - a)]}$$

Pole position:
$$a_p = a_0 + \left\{ a_0^3 \left[\frac{3r_0}{2a_0} - 1 \right] \right\}^{1/3}$$

UNCLASSIFIED

Effective field theory \iff R matrix: dt \rightarrow n α

Exactly soluble EFT with 'wrong-sign' free Lagrangian and DOF:

Particle	Spin	Operators	Mass	Binding
Alpha	0+	$\phi_{\alpha}^{\dagger}(\mathbf{r},t), \ \phi_{\alpha}(\mathbf{r},t)$	$m_{\alpha} = 2m_p + 2m_n$	ϵ_{lpha}
Deuteron	1^+	$oldsymbol{\phi}_d^\dagger(\mathbf{r},t), oldsymbol{\phi}_d(\mathbf{r},t)$	$m_d = m_p + m_n$	ϵ_d
Neutron	$\frac{1}{2}$ +	$\psi_n^{\dagger}(\mathbf{r},t),\psi_n(\mathbf{r},t)$	m_n	$\epsilon_n \equiv 0$
Triton	$\frac{1}{2}$	$\psi_t^{\dagger}(\mathbf{r},t),\psi_t(\mathbf{r},t)$	$m_t = m_p + 2m_n$	ϵ_t
$^5\mathrm{He}^*$	$\frac{\overline{2}}{3}$ +	$\psi_*^{\dagger}(\mathbf{r},t),\psi_*(\mathbf{r},t)$	$m_* = 2m_p + 3m_n$	ϵ_*

$$\mathcal{L}_{\text{int}} = g_{dt} \left[\boldsymbol{\psi}_{*}^{\dagger} \cdot \boldsymbol{\phi}_{d} \psi_{t} + \psi_{t}^{\dagger} \boldsymbol{\phi}_{d}^{\dagger} \cdot \boldsymbol{\psi}_{*} \right] + g_{n\alpha} \left[\boldsymbol{\psi}_{*}^{\dagger} \cdot \boldsymbol{\Psi}_{n\alpha} + \boldsymbol{\Psi}_{n\alpha}^{\dagger} \cdot \boldsymbol{\psi}_{*} \right]$$

$$\sigma_{dt \to n\alpha} = \frac{8}{9} 4\pi m_{n\alpha} \frac{p_{n\alpha}^5}{v_{dt}} \frac{g_{dt}^2}{4\pi} \frac{g_{n\alpha}^2}{4\pi} \left| \psi_{\mathbf{p}_{dt}}^{(0)}(0) \right|^2 \left| \left[\frac{p_{dt}^2}{2m_{dt}} - E_* - \frac{g_{dt}^2}{4\pi} \Delta(W) \right]^2 + \left[\frac{g_{dt}^2}{4\pi} 2m_{dt} p_{dt} \left| \psi_{\mathbf{p}_{dt}}^{(C)}(0) \right|^2 + \frac{g_{n\alpha}^2}{4\pi} \frac{2}{3} m_{n\alpha} p_{n\alpha}^5 \right]^2 \right|^{-2}$$

Identical to R-matrix (d,t)&(n, α) in the limit a_d , $a_n \rightarrow 0$

$$\gamma_d^2 = -\frac{g_d^2}{2\pi} \frac{\mu_d}{\hbar^2 a_d} \text{ and } \gamma_n^2 = -\frac{g_n^2}{6\pi} \frac{\mu_n}{\hbar^2 a_n^5}$$

UNCLASSIFIED

Effective field theory \iff R matrix: $dt \rightarrow n\alpha$

- Dim'less astrophys factor vs E_d(CM)
- Solid-blue: 3 par EFT fit chi²/dof~0.8
- Dashed-red: Bosch & Hale (1992)
 - -2665 data/117 pars/chi²/dof~1.6

- Four parameter fit @ finite a
- Divide out Bosch-Hale92 fit
- -Unphysical reduced widths $\gamma_c^2 < 0$ a<2 fm

Summary, findings & future work

Summary/findings

- Provided overview of current work in the LANL light nuclear reaction program
- Emphasize the utility of multichannel, unitary parametrization of light nuc data
 - ¹⁷O norm issue: are Bair & Haas '73 data conclusive?
 - ⁹B resonance spectrum: no resonances in ⁹B that reside within ~200 (~100) keV of the d+⁷Be (³He+⁶Li) threshold with 'large' widths 10—40 keV
 - Appears to rule out scenarios considered by Cyburt & Pospelov (2009) that low-lying, robust resonance in ⁹B could explain the "Li problem"

Near-term, Future Work

- Complete ^{13,14}C analyses
- NN up to 200 MeV
- Improvements in the ⁹B analysis: more channels; incorporate p+⁸Be* angular data; proper treatment three-body final states
- Extend EFT—R-matrix approach to multichannel, multilevel problems

IGPPS AVASE

Supplementary material

Additional slides follow

Motivation

Cross section evaluation & resonance structure

→ Nucl. Phys. A745, 155, 2004(2011)

$E_{ m x}$ a (MeV \pm keV)	$J^{\pi}; T$	Γ _{c.m.} (keV)	Decay
16.024 ± 25	$T = \left(\frac{1}{2}\right)$	180 ± 16	
$16.71 \pm 100 ^{ m h}$	$\left(\frac{5}{2}^+\right);\left(\frac{1}{2}\right)$		
17.076 ± 4	$\frac{1}{2}^-; \frac{3}{2}$	22 ± 5	$(\gamma, {}^{3}\text{He})$
17.190 ± 25		120 ± 40	p, d, ³ He
$17.54 \pm 100^{\rm \ h,i}$	$(\frac{7}{2}^+); (\frac{1}{2})$		
$17.637 \pm 10^{\text{ i}}$		71 ± 8	$p, d, {}^{3}He, \alpha$

Astrophysical applications

- →Big bang nucleosynthesis
 - Nuclear physics solution to ${}^{7}Li$ predicted overproduction problem? (cf. Hoyle)
 - Details next slide.

Purpose within Los Alamos Nat. Lab programmatic

- → Continue the R-matrix program for various end-users
- →Ongoing/upcoming analysis releases: ⁷Be, ¹³C [G. Hale Tues. Session GA 2], ¹⁴C, ¹⁷O, ...

IGPPS Los Alamos

Implementation in EDA

EDA = Energy Dependent Analysis

$$\rightarrow$$
Adjust $E_{\lambda} \& \gamma_{c\lambda}$

Any number of two-body channels

→ Arbitrary spins, masses, charges (incl. mass zero)

Scattering observables

→ Wolfenstein trace formalism

Data

- → Normalization
- →Energy shifts
- →Energy resolution/spread

Fit solution

$$\chi_{EDA}^2 = \sum_{i} \left[\frac{nX_i(\mathbf{p}) - R_i}{\delta R_i} \right]^2 + \left[\frac{nS - 1}{\delta S/S} \right]^2$$

Covariance determined

Electromagnetic channels

One-photon sector of Fock space

→Photon 'wave function'

$$\mathbf{A}_{\mathbf{k}}(\mathbf{r}) = \left(\frac{2}{\pi\hbar c}\right)^{1/2} \sum_{jm} i^{j} \sum_{\lambda', \lambda = e, m, 0} \mathbf{Y}_{jm}^{(\lambda')}(\hat{\mathbf{r}}) u_{\lambda'\lambda}^{j}(r) \mathbf{Y}_{jm}^{(\lambda)}(\hat{\mathbf{k}}) \cdot \chi$$

→Radial part

$$u_{ee}^{j} = -[f'_{j}(\rho) + t_{ee}^{j}h_{j}^{+'}(\rho)] \qquad u_{0e}^{j} = -\frac{\sqrt{j(j+1)}}{\rho}[f_{j}(\rho) + t_{e0}^{j}h_{j}^{+}(\rho)]$$

$$u_{mm}^{j} = [f_{j}(\rho) + t_{mm}^{j}h_{j}^{+}(\rho)] \qquad u_{0m}^{j} = u_{me}^{j} = u_{em}^{j} = 0$$

→Photon channel surface functions

$$(\mathbf{r}_c|c) = \left(\frac{\hbar c}{2\rho_\gamma}\right)^{1/2} \frac{\delta(r_\gamma - a_\gamma)}{r_\gamma} \left[\phi_{s\nu} \otimes \mathbf{Y}_{jm}^{(e,m)}(\hat{\mathbf{r}}_\gamma)\right]_{JM}$$

- Photon 'mass': $\hbar k_{\gamma}/c$
- →R-matrix definition preserved

$$(c'|\psi) = \sum_{c} R_{c'c}^{B}(c|\frac{\partial}{\partial r_c}r_c - B_c|\psi)$$

R-matrix definition preserved
$$(c'|\psi) = \sum_{c} R_{c'c}^{B}(c|\frac{\partial}{\partial r_{c}}r_{c} - B_{c}|\psi)$$

$$R_{L} = [\mathbf{R}_{B}^{-1} - \mathbf{L} + \mathbf{B}]^{-1}$$

$$\mathbf{L} = \rho \mathbf{O}' \mathbf{O}^{-1}$$

$$F = \operatorname{Im} \mathbf{O}$$

BBN reaction network (simplified)

■ Fields Annu. Rev. Nucl. Part. Sci. 2011. 61:47–68

Spite Plateau

Measurement of primordial 7Li from low-metallicity halo dwarf stars

Asplund M, et al. Astrophys. J. 644:229 (2006)

UNCLASSIFIED

^{13,14}C system analyses: σ_T (b) vs. E_n (MeV)

PS ANALYSIS IN SECTION OF THE PROPERTY OF THE