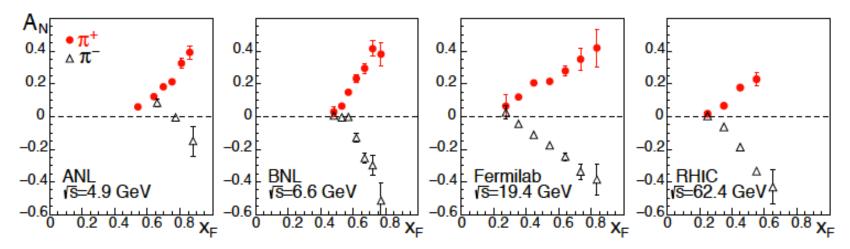
Transverse Single-Spin Asymmetries: Are They Understood?

- Motivation/Introduction
- Transverse momentum dependent parton distributions (TMDs) (definition, overview, processes)
- TMD factorization and its breakdown
- Universality properties of TMDs
- Phenomenology of single-spin asymmetries (SSAs) and what did we learn
 - 1. Sivers asymmetry in semi-inclusive DIS $(\ell N^{\uparrow} \rightarrow \ell H X)$
 - 2. Transverse SSA in proton-proton collisions $(p^{\uparrow}p \to HX)$
 - 3. Transverse SSA in inclusive DIS $(\ell N^{\uparrow} \rightarrow \ell X)$
- Summary

Example: Transverse SSA in $p^\uparrow p o \pi \, X$

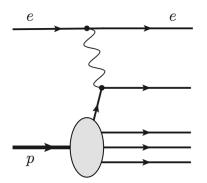
$$A_N = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \qquad x_F = \frac{2P_{hL}}{\sqrt{s}}$$

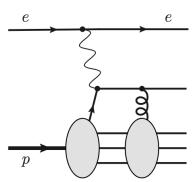


(Aidala, Bass, Hasch, Mallot, 2012)

- Very striking effects
- Many more data available by now (BRAHMS, PHENIX, STAR, ...)
- Twist-2 collinear parton approximation does not work (Kane, Pumplin, Repko, 1978)
- How can the large SSAs be understood in QCD?
- What lessons can we learn from SSAs?
 - \rightarrow we can explore new areas in studies of (1) nucleon structure, (2) QCD factorization,...

Deep-Inelastic Scattering ($e\,p o e\,X$), Parton Model and Beyond



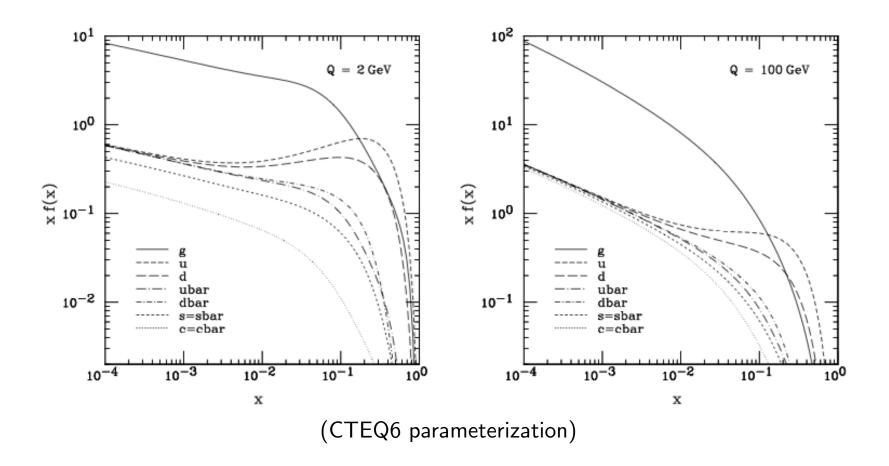


- Fast moving nucleon consists of quasi-free partons
- ullet Partons' longitudinal momentum is fraction x of the nucleon momentum $(0 \le x \le 1)$
- Prescription for calculation of cross section

$$\sigma_{ep \to eX} = \sum_{a} \int_{0}^{1} dx \, f_{1}^{a}(x) \, \hat{\sigma}_{ea}(x_{Bj}/x) + \mathcal{O}\left(\frac{1}{Q}\right) \qquad x_{Bj} = \frac{Q^{2}}{2P \cdot q}$$

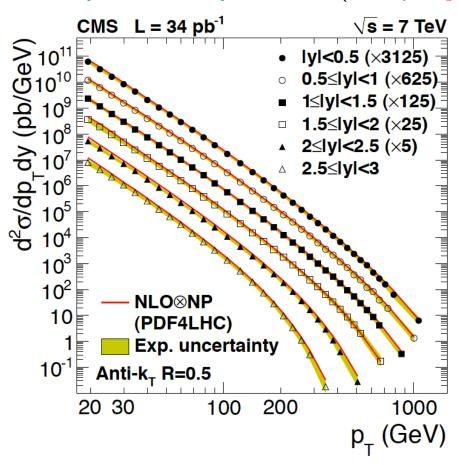
- $f_1^a(x)$ is parton distribution (probability density, non-perturbative, universal)
- $\hat{\sigma}_{ea}$ is partonic cross section (perturbative, process-dependent)
- momentum fraction x can be measured $(x=x_{Bj}$ in parton model)
- prototype of factorization formula in perturbative QCD
- in full QCD: $f_1^a = f_1^a(x, \mu^2)$; higher order corrections to $\hat{\sigma}_{ea}$; power corrections
- final state interaction of active parton can be incorporated into definition of f_1^a

• Unpolarized parton distributions from fits to data using full QCD



- unpolarized PDFs are rather well known
- at small momentum fractions x the gluon PDF dominates

• Perturbative QCD machinery is remarkably successful (Example: $p p \rightarrow \text{jet } X$)



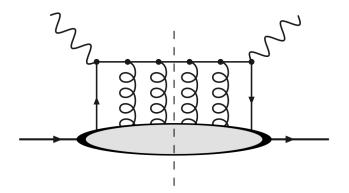
- Yet many open questions remain
 - what about partons' transverse motion? \rightarrow 3-D structure
 - under which circumstances do we have QCD factorization?
 - etc.
 - → SSAs can give new insights into those questions

Definition of Forward Parton Distributions (PDFs)

handbag diagram for $\ell N \to \ell X$

 $\gamma^{*(q)}$

adding quark re-scattering



- Factorization into perturbative and non-perturbative part
- ullet Field-theoretic definition of unpolarized PDF $(P^+ \sim (P^0 + P^z) \quad P^- \sim (P^0 P^z))$

$$\frac{1}{2} \int \frac{d\xi^{-}}{2\pi} e^{ik\cdot\xi} \langle P, S | \bar{\psi}^{q}(0) \gamma^{+} \mathcal{W}_{PDF} \psi^{q}(\xi^{-}) | P, S \rangle = f_{1}^{q}(x = k^{+}/P^{+})$$

- ullet Three leading twist quark PDFs: f_1^q g_1^q h_1^q
- ullet Wilson line (gauge link) \mathcal{W}_{PDF} ensures color gauge invariance
- W_{PDF} generated by quark re-scattering (FSI of active quark)
- Forward PDFs are universal

TMDs: Definition and Overview

Definition for unpolarized quarks (notation: Mulders, Tangerman, 1995)

$$\frac{1}{2} \int \frac{d\xi^{-}}{2\pi} \frac{d^{2}\vec{\xi}_{T}}{(2\pi)^{2}} e^{ik\cdot\xi} \left\langle P, S \middle| \bar{\psi}^{q}(0) \gamma^{+} \mathcal{W}_{TMD} \psi^{q}(\xi^{-}, \vec{\xi}_{T}) \middle| P, S \right\rangle
= f_{1}^{q}(x, \vec{k}_{T}^{2}) - \frac{\vec{S}_{T} \cdot (\hat{P} \times \vec{k}_{T})}{M} f_{1T}^{\perp q}(x, \vec{k}_{T}^{2})$$

- partonic nucleon structure beyond collinear approximation \rightarrow 3-D structure in (x,\vec{k}_T) -space
- Sivers function f_{1T}^{\perp} describes strength of spin-orbit correlation (Sivers, 1989)
- Sivers function can give rise to SSAs in scattering processes
- \mathcal{W}_{TMD} ensures color gauge invariance
- $f_{1T}^{\perp q}$ would vanish without \mathcal{W}_{TMD} (Collins, 1992) \rightarrow experimental evidence for significance of quark re-scattering?

Overview of leading twist quark TMDs

$$\left\langle \mid \bar{\psi}^{q} \, \gamma^{+} \, \psi^{q} \mid \right\rangle \sim f_{1}^{q} - \frac{\varepsilon_{T}^{ij} \, k_{T}^{i} \, S_{T}^{j}}{M} f_{1T}^{\perp q}$$

$$\lambda \left\langle \mid \bar{\psi}^{q} \, \gamma^{+} \gamma_{5} \, \psi^{q} \mid \right\rangle \sim \lambda \Lambda g_{1}^{q} + \frac{\lambda \, \vec{k}_{T} \cdot \vec{S}_{T}}{M} g_{1T}^{q}$$

$$s_{T}^{i} \left\langle \mid \bar{\psi}^{q} \, i \sigma^{i+} \gamma_{5} \, \psi^{q} \mid \right\rangle \sim \vec{s}_{T} \cdot \vec{S}_{T} \, h_{1}^{q} + \frac{\Lambda \, \vec{k}_{T} \cdot \vec{s}_{T}}{M} \, h_{1L}^{\perp q} - \frac{\varepsilon_{T}^{ij} \, k_{T}^{i} \, s_{T}^{j}}{M} \, h_{1}^{\perp q}$$

$$+ \frac{1}{2M^{2}} \left(2 \, \vec{k}_{T} \cdot \vec{s}_{T} \, \vec{k}_{T} \cdot \vec{S}_{T} - \vec{k}_{T}^{\, 2} \, \vec{s}_{T} \cdot \vec{S}_{T} \right) h_{1T}^{\perp q}$$

quark polarization

	U	L	Т
U	f_1^q		$h_1^{\perp q}$
L		g_1^q	$h_{1L}^{\perp q}$
T	$f_{1T}^{\perp q}$	g_{1T}^q	$h_1^q \;\; h_{1T}^{\perp q}$

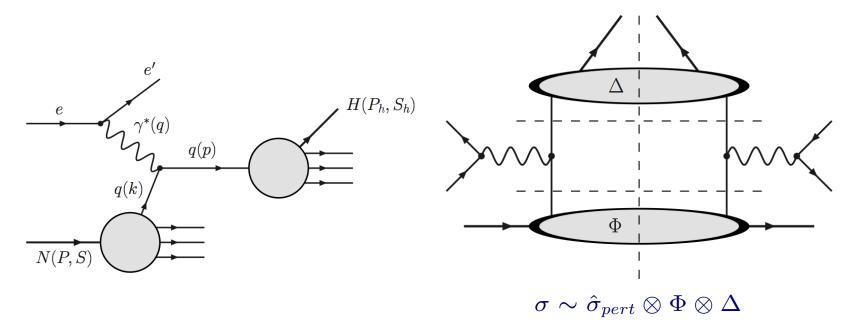
- 2 (naive) T-odd TMDs: $f_{1T}^{\perp q}$ $h_1^{\perp q}$ dipole and quadrupole pattern

 - physics of each TMD is unique

 also: 8 leading twist TMD quark fragmentation functions (FFs) particularly important: H_1^{\perp} (Collins function) describing $q^{\uparrow} \rightarrow HX$

Processes Directly Sensitive to TMDs

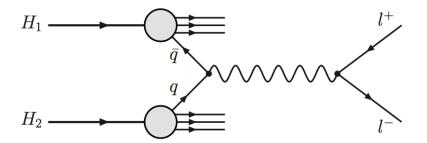
1. Semi-inclusive deep-inelastic scattering: $\ell N \to \ell H X$



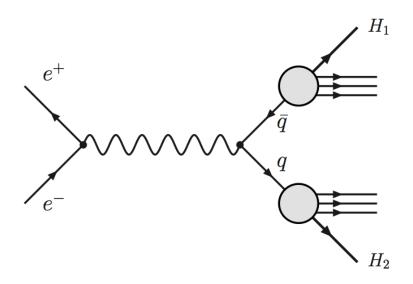
Factorization formula depends on kinematical situation:

- ullet Cross section integrated upon $P_{h\perp}$
- ullet Cross section differential in $P_{h\perp}$, and $P_{h\perp}\sim Q$
- ullet Cross section differential in $P_{h\perp}$, and $P_{h\perp}\ll Q$ o realm of TMDs

2. Drell-Yan process: $H_1 H_2 \rightarrow \ell^+ \ell^- X$



3. Electron-positron annihilation: $e^+ e^- o H_1 \, H_2 \, X$

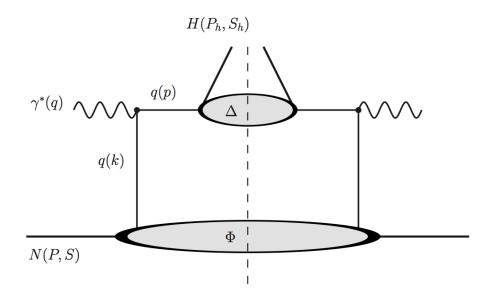


TMD Factorization for p_T -Dependent Processes

Sample process: $\ell N \to \ell H X$

1. Tree level

(Ralston, Soper, 1979)

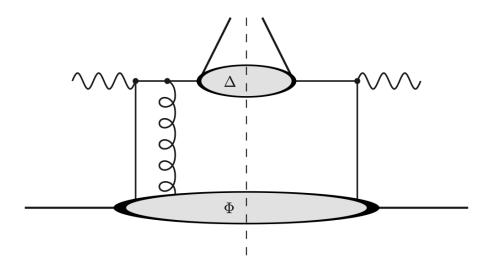


$$rac{d\sigma_{unp}}{d^3 ec{l'}\, d^3 ec{P}_h} \, \propto \, \int d^2 ec{k}_T \, d^2 ec{p}_T \, f_1(x, ec{k}_T^{\, 2}) \, D_1(z, ec{p}_T^{\, 2}) \, \delta^{(2)}(ec{k}_T + ec{q}_T - ec{p}_T) + \ldots$$

$$f_1^q(x, \vec{k}_T^2) = \frac{1}{2} \int \frac{d\xi^-}{2\pi} \frac{d^2 \vec{\xi}_T}{(2\pi)^2} e^{ik\cdot\xi} \langle P, S | \bar{\psi}^q(0) \gamma^+ \psi^q(\xi^-) | P, S \rangle$$

2. Tree level (gauge invariant)

(... / Belitsky, Ji, Yuan, 2002 / Boer, Mulders, Pijlman, 2003 / ...)



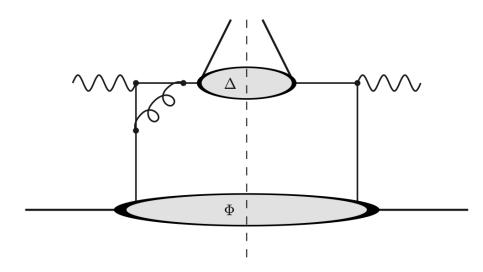
$$rac{d\sigma_{unp}}{d^3ec{l'}\,d^3ec{P}_h} \, \propto \, \int d^2ec{k}_T \, d^2ec{p}_T \, f_1(x,ec{k}_T^{\,2}) \, D_1(z,ec{p}_T^{\,2}) \, \delta^{(2)}(ec{k}_T + ec{q}_T - ec{p}_T) + \ldots$$

$$f_1^q(x, \vec{k}_T^{\,2}) \; = \; \frac{1}{2} \int \frac{d\xi^-}{2\pi} \, \frac{d^2 \vec{\xi}_T}{(2\pi)^2} \, e^{ik \cdot \xi} \, \left\langle P, S \, \middle| \, \bar{\psi}^q(0) \, \gamma^+ \, \mathcal{W}_{TMD} \, \psi^q(\xi^-) \, \middle| P, S \right\rangle$$

 Complications: Rapidity divergences, Wilson line self energies → under control (Collins, Soper, 1981 / Collins, Hautmann, 2000 / Cherednikov, Stefanis, 2007 / Collins 2011 / Echevarria, Idilbi, Schimemi, 2011 / ...)

3. Beyond tree level

(Collins, Soper, 1981 / Collins, Soper, Sterman, 1985 / Ji, Ma, Yuan, 2004 / Collins, Metz, 2004 / ...)



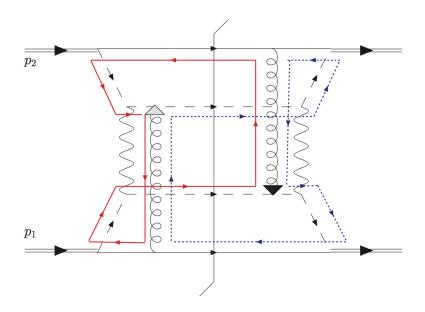
$$egin{aligned} rac{d\sigma_{unp}}{d^3 ec{l'} \, d^3 ec{P}_h} & \propto & \int d^2 ec{k}_T \, d^2 ec{p}_T \, d^2 ec{l}_T \, f_{1\, ext{Sub}}(x, ec{k}_T^{\, 2}) \, D_{1\, ext{Sub}}(z, ec{p}_T^{\, 2}) \ & ext{ } ext{ }$$

- Leading twist contribution for collinear, soft, and hard gluon radiation
- Avoid double counting by subtraction formalism → modified definitions of TMDs
- Further development: absorb all soft gluon effects in TMDs after Fourier transform to b_T -space (Collins, 2011)
- SSAs can provide strong tests of TMD factorization

Breakdown of TMD Factorization

- Sample process: $p p \rightarrow \text{jet jet } X$
- Originally thought to show Generalized TMD Factorization

 → definition of TMDs depends on partonic subprocess
 (Bomhof, Mulders, Pijlman, 2004 / ... / Collins, Qiu, 2007 / Collins, 2007)
- However, even Generalized TMD Factorization breaks down (Rogers, Mulders, 2010)



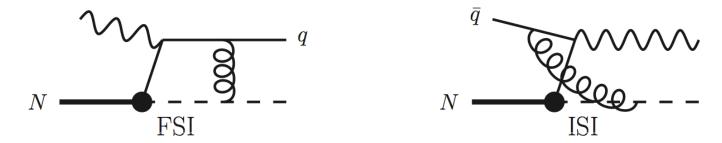
- complicated color flow does not allow one to define two individual TMDs (color-entanglement)
- specific to non-Abelian gauge theory

Breakdown of Universality: TMDs in SIDIS vs DY

Prediction based on operator definition in quantum field theory (Collins, 2002)
 (operator definition follows from factorization)

$$f_{1T}^{\perp}|_{DY} = -f_{1T}^{\perp}|_{SIDIS}$$
 $h_1^{\perp}|_{DY} = -h_1^{\perp}|_{SIDIS}$

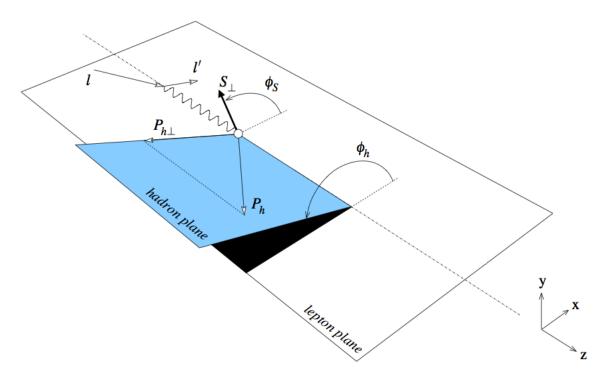
• Underlying physics: re-scattering of active partons with hadron remnants: Final state interaction in semi-inclusive DIS vs Initial state interaction in Drell-Yan \rightarrow change in the direction of \mathcal{W}_{TMD}



- Several labs worldwide aim at measurement of Sivers effect in Drell-Yan:
 BNL, CERN, FermiLab, GSI, IHEP, JINR, J-PARC
- Experimental verification of sign reversal is pending (DOE milestone HP13!)
- TMD FFs expected to be universal (Metz, 2002 / Collins, Metz, 2004 / ...)
 → supported by existing phenomenology

Kinematics and SSAs for Semi-Inclusive DIS: $\ell\,N^{\uparrow}\,\, ightarrow\,\ell\,H\,X$

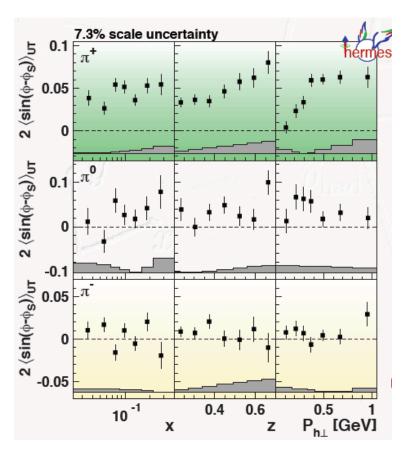
ullet 6 independent kinematical variables: $x \ Q^2 \ \phi_S \ z \ P_{h\perp} \ \phi_h$



- 18 structure functions (model-independent)
- At low $P_{h\perp}$, 8 structure functions are related to 8 leading twist TMDs
- Transverse target polarization: Sivers component and Collins component

$$d\sigma^{\uparrow} \sim \sin(\phi_h - \phi_S) f_{1T}^{\perp} \otimes D_1 + \sin(\phi_h + \phi_S) h_1 \otimes H_1^{\perp} + \dots$$

Observation of Nonzero Sivers Asymmetry in SIDIS

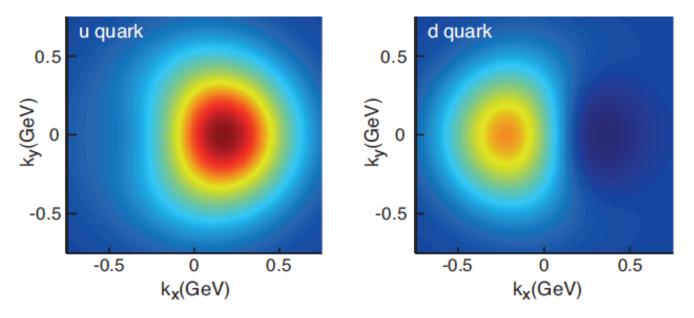


- In the meantime, many (consistent) data from HERMES, COMPASS, JLab
- ullet Evidence for quark re-scattering o process dependence of f_{1T}^\perp can be expected
- Have we fully understood the Sivers asymmetry in semi-inclusive DIS?
- In any case, verification of process dependence of f_{1T}^{\perp} would provide further evidence for underlying re-scattering picture

3-D structure of the Nucleon: Distortion due to Sivers Effect

- first extraction of f_{1T}^{\perp} : Efremov et al, 2005
- various (improved) extractions available by now

$$f_1^q(x, \vec{k}_T^2) + \frac{(\vec{S}_T \times \vec{k}_T) \cdot \hat{P}}{M} f_{1T}^{\perp q}(x, \vec{k}_T^2)$$
 $(x = 0.1)$



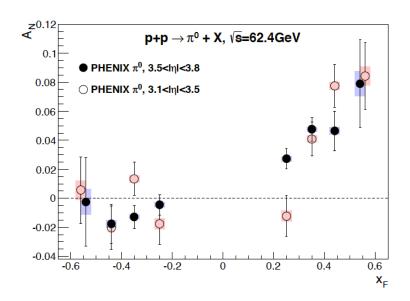
(from arXiv:1212.1701, based on Anselmino et al, 2011)

- Sivers effect generates distorted distribution of unpolarized quarks
- 3-D imaging of the nucleon now possible (plots based on data!)

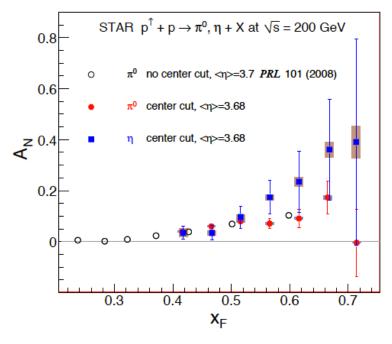
Transverse SSA in $p^\uparrow p o H\, X$

$$A_N = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$

1. Recent sample data from RHIC



PHENIX, 2013 $\sqrt{s} = 62.4 \,\mathrm{GeV}$



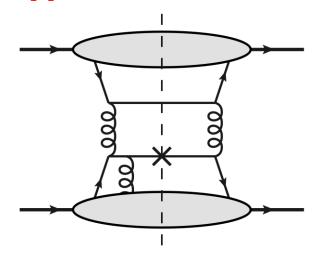
STAR, 2012
$$\sqrt{s} = 200 \,\mathrm{GeV}$$

- ullet Significant nonzero effects at positive x_F
- ullet $A_N^{\pi^0}$ systematically smaller than magnitude of $A_N^{\pi^\pm}$

2. Collinear twist-3 factorization

(Ellis, Furmanski, Petronzio, 1983 / Efremov, Teryaev, 1983, 1984 / Qiu, Sterman, 1991, 1998 / etc.)

ullet Sample diagram for $q \ q o q \ q$ channel



- attach extra gluon in all possible ways and consider all channels
- General structure of cross section

$$d\sigma(\vec{S}_T) = H \otimes f_{a/A(3)} \otimes f_{b/B(2)} \otimes D_{C/c(2)} \rightarrow \text{Sivers-type}$$

$$+ H' \otimes f_{a/A(2)} \otimes f_{b/B(3)} \otimes D_{C/c(2)} \rightarrow \text{Boer-Mulders-type}$$

$$+ H'' \otimes f_{a/A(2)} \otimes f_{b/B(2)} \otimes D_{C/c(3)} \rightarrow \text{"Collins-type"}$$

- Sivers-type contribution
 - Focus on contribution from QS function T_F (Qiu, Sterman)

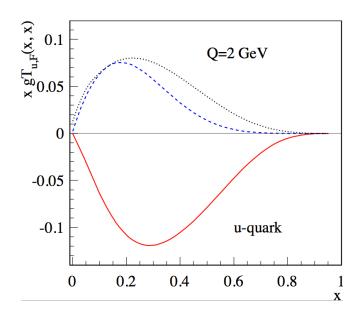
$$\int \frac{d\xi^{-}d\zeta^{-}}{4\pi} e^{ixP^{+}\xi^{-}} \langle P, S | \bar{\psi}^{q}(0) \gamma^{+} F_{QCD}^{+i}(\zeta^{-}) \psi^{q}(\xi^{-}) | P, S \rangle = -\varepsilon_{T}^{ij} S_{T}^{j} T_{F}^{q}(x, x)$$

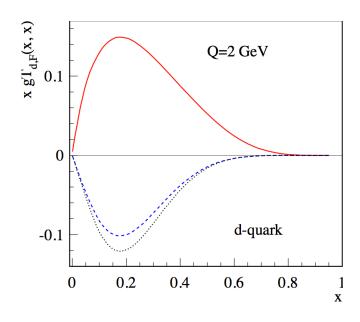
- vanishing gluon momentum → soft gluon pole matrix element
- relation to Sivers function (Boer, Mulders, Pijlman, 2003)

$$g\,T_F(x,x) = -\int d^2ec{k}_T\,rac{ec{k}_T^{\,2}}{M}\,f_{1T}^\perp(x,ec{k}_T^{\,2})\Big|_{SIDIS}$$

- relation between Sivers asymmetry in SIDIS and the SSA in $p^{\uparrow}p \rightarrow h X$ possible
- Boer-Mulders-type contribution
 - expected to be very small (Koike, Kanazawa, 2000)
- "Collins-type" contribution
 - first study focused on so-called derivative term (Kang, Yuan, Zhou, 2010)
 - full result obtained recently (Metz, Pitonyak, 2012)

- 3. Sign mismatch for Sivers effect (Kang, Qiu, Vogelsang, Yuan, 2011)
 - ullet Assume SSA in $p^\uparrow p o H X$ is dominated by Sivers-type contribution
 - \bullet T_F can be extracted from different sources (direct extraction vs Sivers input)



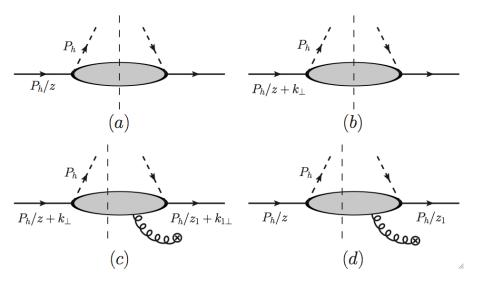


- Striking sign mismatch!
- ullet Which of the signs for T_F is correct?
- Is the assumption of a dominating Sivers-type contribution unjustified?
- ullet Analysis of SSA in inclusive DIS $(\ell \ N^{\uparrow}
 ightarrow \ell \ X)$ actually suggests this
- ullet Can the large SSAs in $p^\uparrow p o H \, X$ be caused by the "Collins-type" contribution?

Fragmentation Contribution to Transverse SSA in $p^\uparrow p o H\, X$

(Metz, Pitonyak, 2012)

1. Contributing effects



- ullet Collinear twist-3 quark-quark correlator: H(z)
- ullet Transverse momentum effect from quark-quark correlator: $\hat{H}(z)$
 - ightarrow has relation with Collins function: $\hat{H}(z)=z^2\int d^2\vec{k}_\perp \, rac{\vec{k}_\perp^{\,2}}{2M_h^2} \, H_1^\perp(z,z^2\vec{k}_\perp^{\,2})$
- ullet Collinear twist-3 quark-gluon-quark correlator: $\hat{H}^{\Im}_{FU}(z,z_1)$

2. Analytical results

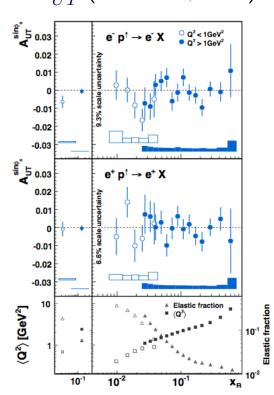
$$\begin{split} \frac{P_h^0 d\sigma(\vec{S}_\perp)}{d^3 \vec{P}_h} &= -\frac{2\alpha_s^2 M_h}{S} \epsilon_{\perp,\alpha\beta} \, S_\perp^\alpha P_{h\perp}^\beta \\ &\times \sum_i \sum_{a,b,c} \int_{z_{min}}^1 \frac{dz}{z^3} \int_{x'_{min}}^1 \frac{dx'}{x'} \frac{1}{x} \frac{1}{x'S + T/z} \frac{1}{-x'\hat{t} - x\hat{u}} \, h_1^a(x) \, f_1^b(x') \\ &\times \left\{ \left[\hat{H}^c(z) - z \frac{d\hat{H}^c(z)}{dz} \right] S_{\hat{H}}^i + \frac{1}{z} H^c(z) \, S_H^i \right. \\ &\left. + 2z^2 \int \frac{dz_1}{z_1^2} PV \frac{1}{\frac{1}{z} - \frac{1}{z_1}} \hat{H}_{FU}^{c,\Im}(z, z_1) \, \frac{1}{\xi} \, S_{\hat{H}_{FU}}^i \right\} \end{split}$$

- ullet $\hat{H},\ H,\ \hat{H}_{FU}^{\Im}$ related, but dynamics in twist-3 approach goes beyond Collins effect
- ullet Derivative term for \hat{H} computed previously (Kang, Yuan, Zhou, 2010) \to does not necessarily dominate
- \hat{H} -contribution (Collins effect) has correct sign (Anselmino et al, 2012)
- Phenomenology of all contributions needed

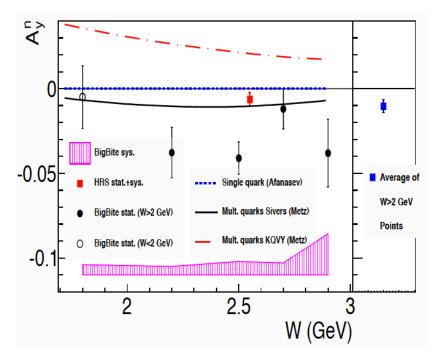
Transverse SSA in Inclusive DIS, $e\,N^{\uparrow}\,\, ightarrow\,e\,X$

1. Recent data

 A_{UT}^p (HERMES, 2009)



 A_{UT}^n (JLab Hall A, 2013) (obtained with ${}^3{\rm He}^{\uparrow}$ target)



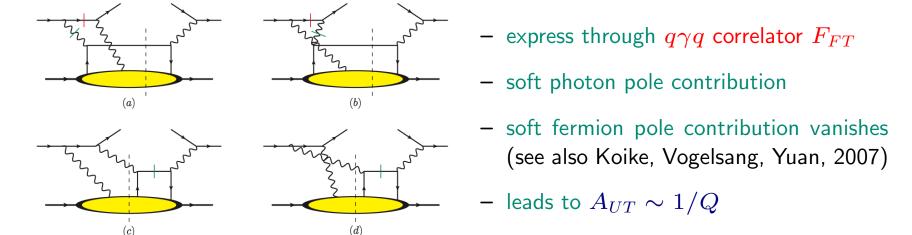
 $A_{UT}^p = 0$ within uncertainties (10⁻³)

$$A_{UT}^n \neq 0$$

- Can one (qualitatively) understand these data?
- Can one learn something beyond inclusive DIS?

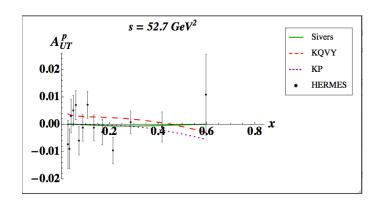
2. Theory

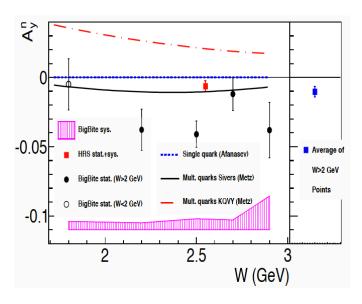
- $A_{UT} = 0$ for one-photon exchange (Christ, Lee, 1966)
- Two photons coupling to the same quark (Metz, Schlegel, Goeke, 2006 / Afanasev, Strikman, Weiss, 2007 / Schlegel 2012)
- Two photons coupling to different quarks
 (Metz, Pitonyak, Schäfer, Schlegel, Vogelsang, Zhou, 2012)



- ullet Couplings to different quarks presumably dominate, in particular at larger x
- Re-scattering of active parton (lepton) with target remnants (FSI and ISI)
 → one can test process dependence of Sivers effect

- ullet For valence quarks one can find (model-dependent) relation between F_{FT} and T_F
- Comparison with data





- "Sivers input" for T_F (obtained from f_{1T}^{\perp}) provides description of data
- simultaneous description of transverse SSAs in SIDIS and in Inclusive DIS
- first indication of process dependence of Sivers effect
- note: process dependence of Sivers effect also studied recently in $p^{\uparrow}p \to \text{jet }X$ (Gamberg, Kang, Prokudin, 2013)
- "KQVY input" for T_F (obtained from SSA in $p^{\uparrow}p \to HX$), in particular, has wrong sign for neutron asymmetry
- apparently, SSA $p^\uparrow p \to H\,X$ indeed not caused by Sivers-type contribution (same conclusion more recently by PHENIX, 2013)

Summary

- Transverse SSAs have been observed in several hard scattering processes
- QCD description requires to go beyond twist-2 collinear parton approximation
 - → exploring new territories in QCD
- SSAs provide input on
 - TMDs (3-D structure of the nucleon)
 - QCD factorization
 - Universality properties of parton correlation functions
- Simultaneous description of transverse SSAs may be achieved for
 - semi-inclusive DIS (TMD-factorization)
 - processes like $p^{\uparrow}p \to HX$ (collinear twist-3 factorization)
 - inclusive DIS (collinear twist-3 factorization)
- Important indications from phenomenology:
 - Sivers effect is process dependent
 - Large SSAs in $p^{\uparrow}p \to HX$ not caused by the Sivers effect