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 Quantum Phase Transition (QPT) 

H()       control parameter           

V(;)     Landau potential 

 < *       single minimum 

 = *       spinodal point: 2nd min. appears 

 = c        critical point: two degenerate minima 

 = **      anti-spinodal point: 1st min. disappears 

 > **      single minimum   

* <  < **      coexistence region 

 

V(;) 

* 

c 

** 

 < c     single minimum 

 = c     critical point 

 > c     single minimum   

 first order QPT V(;) second order QPT 

 

c 



EXP     148Sm (spherical)    152Sm(critical)    154Sm(deformed) 

• What is the nature of the dynamics (regularity v.s. chaos) in such circumstances ? 



H()  =  H1 + (1-  ) H2          

• Competing  interactions 

 

• Incompatible symmetries 

 

• Evolution of order and chaos across the QPT 

 

• Remaining regularity and persisting symmetries 

Dicke model of quantum optics,  2nd order QPT (Emary, Brandes, PRL, PRE 2003) 

Interacting boson model (IBM) of nuclei, 1st order QPT (this talk) 



• IBM:  s (L=0) , d (L=2) bosons, N conserved   (Arima, Iachello 75) 

                    

• Spectrum generating algebra  U(6) 

• Dynamical symmetries 

U(6)  U(5)  O(5)  O(3)       [N] nd  n L       Spherical vibrator 

U(6)  SU(3)   O(3)               [N] ( , ) K L     Axial rotor 

U(6)  O(6)  O(5)  O(3)       [N]   n L         -unstable rotor  

U(5)   
nd = 0 

nd = 1 

nd = 2 

(2N,0) 

(2N-4,2) 

SU(3) 



• Geometry 

global min: (eq , eq)  

eq  = 0                                     spherical shape   

eq  > 0, eq = 0, /3, -indep.   deformed shape  

• Intrinsic collective resolution 

affects V(,) rotation terms 



• Geometry 

global min: (eq , eq)  

eq  = 0                                     spherical shape   

eq  > 0, eq = 0, /3, -indep.   deformed shape  

• Intrinsic collective resolution 

• QPT 

affects V(,) rotation terms 

H()  =  HG1 + (1- ) HG2          

dynamical symmetries Gi = U(5), SU(3), O(6)  phases [spherical, deformed: axial, -unstable] 

Landau potential 

order parameters 



• Geometry 

global min: (eq , eq)  

eq  = 0                                     spherical shape   

eq  > 0, eq = 0, /3, -indep.   deformed shape  

• Intrinsic collective resolution 

• QPT 

affects V(,) rotation terms 

H()  =  HG1 + (1- ) HG2          

dynamical symmetries Gi = U(5), SU(3), O(6)  phases [spherical, deformed: axial, -unstable] 

Landau potential 

order parameters 

exact DS: integrable regular dynamics broken DS: non-integrable chaotic dynamics 



control parameters 

critical point 

 First-order QPT 

Intrinsic Hamiltonian 

spherical 

deformed 

U(5) DS 

SU(3) DS 

critical-point Hamiltonian  



spherical 

deformed 

potential phase 

spinodal :                    critical :                                    anti-spinodal:  

  U(5) limit           spinodal point      critical point       anti-spinodal point                              SU(3) limit   

    U(5) = 0                  = *                 = c                   = **       ** <  < SU(3)         = SU(3)  



• Region     stable spherical phase

 
• Region    phase coexistence

 
• Region   stable deformed phase 



Classical analysis 

• For L=0 classical Hamiltonian becomes two-dimensional 

 

      , , p, p     x = cos , y = sin, px , py        V(,) = V(x,y)                                                         

 

• Classical Hamiltonian:                  s
  

 , coherent states (N ) 

 zero momenta:    classical potential V(,) 



Classical analysis 

• For L=0 classical Hamiltonian becomes two-dimensional 

 

      , , p, p     x = cos , y = sin, px , py        V(,) = V(x,y)                                                         

 

• Classical dynamics can be depicted conveniently via Poincare sections  

   (y=0, fixed E) 

 Regular trajectories: bound to toroidal manifolds within the phase space 

                                    intersections with plane of section lie on 1D curves (ovals)  

 Chaotic trajectories: randomly cover kinematically  accessible areas  

                                   of the section 

• Classical Hamiltonian:                  s
  

 , coherent states (N ) 

 zero momenta:    classical potential V(,) 



dynamics near eq = 0  

dynamics near eq > 0  

 = 0.03    = 0.2, E1    = 0.2, E2 > E1    = 0.2, E3 > E2   

=1/4, R=1/2   =1, SU(3) DS  =1/2, R=2/3   = 0.11   

•  > 0:  

  non-integrability due to  

  O(5)-breaking term in H1()   

• Henon-Heiles system 

•  < 1:  
   SU(3)-DS broken in H2() but    

  dynamics remains robustly regular 

• Basic simple form: 

  single island of concentric loops 

• Resonances at rational values of  



classical dynamics in the coexistence region  

Both types of dynamics occur at the same energy in different regions of phase space 

 

- Spherical well:   HH-like chaotic motion 

- Deformed well:  regular dynamics  





• =0: anharmonic (quartic) oscillator 

• small : Henon-Heiles system 

               regularity at low E  

               marked onset of chaos at higher E 

• chaotic component maximizes at *  

 Region : stable spherical phase 



 Region : shape coexistence 

• dynamics changes in the coexistence region 

   

   as the local deformed min develops,  

   regular dynamics appears 

 

    regular island remains even at E > barrier! 

    well separated from chaotic environment  



 Region : stable deformed phase 

• as  increases,  

  spherical min becomes shallower,  

  HH dynamics diminishes & disappears at ** 

• regular motion prevails for  > **, where 

  landscape changes: single  several islands  

• dynamics is sensitive to local      

  normal-model degeneracies 





Quantum spectrum L=0 states 

spherical side (0    c )  deformed side  (c    1) 

* ** 

normal modes 

- resonances 

bunching of levels 

(avoided) level crossing 

In classical chaotic regimes 



Quantum analysis 

• Peres lattices   

• Regular states:     ordered pattern 

• Irregular states:    disordered meshes of points 

A. Peres, Phys. Rev. Lett. 53, 1711 (1984) 

Mixed quantum systems: level statistics in-between Poisson (regular) and GOE (chaotic)  

Such global measures of quantum chaos are insufficient for an inhomogeneous phase space  

Need to distinguish between regular and irregular states in the same energy interval  

Quantum manifestation of classical chaos 





 U(5) = 0                        = 0.03                   = 0.2                * = 0.5   

     ** = 1/3                    = 1/2                     = 2/3                SU(3) = 1   



Peres lattices of L=0 states in the 

coexistence region 



Regular sequences of L=0 states localized within 

or above the deformed well, related to the  

regular islands in the Poincare sections 

Remaining states form disordered (chaotic) meshes 

of points at high energy 

 = 0.6 c = 0  = 0.1  

c = 0 

The number of such sequences is larger for  

deeper  wells  



Peres Lattices L  0 states 

K=2  L=2,3,4…                                    n (K=2), n 3(K=2), n 5(K=2), etc… 

K=0  L=0,2,4,…                      g(K=0), n(K=0), n 2(K=0), n 4(K=0), etc… 

Rotational K-bands   L = K,K+1,K+2,… 

Spherical nd-multiples (nd=0, L=0),(nd=1,L=2),(nd=2,L=0,2,4) 



ordered structure amidst  

a complicated environment 

• Whenever a deformed (or spherical) min. occurs in V(), the Peres lattices exhibit: 

 

   - regular sequences of states (rotational K-bands)  

     localized in the region of the deformed well, persisting to energies >> barrier 

   - or regular spherical-vibrator states (nd multiplets) in the spherical region  

 

      well separated from the remaining states which form disordered meshes of points 

c = 0 

nd=0 

nd=1 

nd=2 

g  

 



w.f. decomposition in the U(5) basis 

 left 

spherical 

states 

 

dominant 

single nd 

component 

right  

deformed 

states 

 

broad nd 

distribution 

c = 0 



w.f. decomposition in the SU(3) basis 

right  

deformed 

states 

 

coherent 

SU(3) 

mixing 

 left 

spherical 

states 

c = 0 



Symmetry analysis 

• Exact dynamical symmetry (DS) 

 

• Partial dynamical symmetry (PDS) 

 

• Quasi dynamical symmetry (QDS) 



 Dynamical Symmetry 

• Solvability of the complete spectrum 

• Quantum numbers for all eigenstates 

Eigenstates: Eigenvalues: 



 Dynamical Symmetry 

• Solvability of the complete spectrum 

• Quantum numbers for all eigenstates 

Eigenstates: Eigenvalues: 

•  Only some states solvable with good symmetry 

 Partial Dynamical Symmetry  

Leviatan,  Prog. Part. Nucl. Phys.  66,  93 (2011) 



Construction of Hamiltonians with PDS   

N                            

  |N 0  = 0  
n-particle  
annihilation 
operator 

for all possible  contained  

in the irrep 0 of G  

• Condition is satisfied if  0  N-n  

DS is broken but  
solvability of states with  = 0 
Is preserved  

n-body 

  |N 0  = 0  Lowest weight state  Equivalently: 

Garcia-Ramos,  Leviatan,  Van Isacker, PRL 102, 112502 (2009) 



SU(3) PDS  

U(6)  SU(3)  SO(3)           
N       (,)   K    L 

• Solvable bands:  g(K=0) , k(K=2k)   good SU(3) symmetry (2N-4k,2k) 
• Other bands:       mixed   

(,) = (0,0)(2,2) SU(3) PDS 

(,) = (0,2) 

(,) = (2N,0) 

Leviatan,  PRL 66, 818 (1996)    



H = (1- ) HU(5) +  HSU(3) 

Rowe et al., NPA (2004, 2005) 

Quasi Dynamical Symmetry (QDS) 

(,) 

away from the critical point 

selected states display properties 

similar to the closest DS 

w.f. display strong but coherent mixing 

SU(3) mixing is similar for all L-states 

in the ground band  

SU(3) QDS 

QDS  intrinsic states  adiabaticity 



Symmetry properties of the QPT Hamiltonian 

spherical 

deformed 



Symmetry aspects 

• Exact dynamical symmetry (DS) 

• Partial dynamical symmetry (PDS)  

• Quasi dynamical symmetry (QDS) 

H1( = 0)    U(5) DS  

H2( = 1)    SU(3) DS 

[N] nd  L   

ALL  states solvable 

[N] ( , ) K L  

SOME  states solvable 

[N] nd =  = L = 3  

[N] nd =  = L = 0   

[N] (2N-4k,2k ) K L     L = K, K+1,…,(2N-2k)      k(K=2k) 

H1(  0)    U(5) PDS   

H2(  1)    SU(3) DS [N] (2N,0) K L             L = 0,2,4,…, 2N                g(K=0) 

subset of observables exhibit properties of 

a DS in spite of strong symmetry-breaking 

“APPARENT”  symmetry 



Regular U(5)-like spherical nd multiplets 

Regular SU(3)-like deformed K-bands 

nd=0 

nd=1 

nd=2 

g  

 

E 

Macek, Leviatan,  PRC 84, 041302(R) (2011)  
Leviatan, Macek,  PLB 714, 110 (2012) 

        0             0.5             1   

1.5 

2 

0.5 

1 

0 



(approximate) U(5) PDS  SU(3) QDS 

Persisting spherical nd multiplets Persisting deformed K-bands 

Macek, Leviatan,  (2014) 



Measures of PDS 

U(5) , SU(3) decomposition 

Shannon entropy Probability distribution 

SG(L) = 0  pure states 



Measures of QDS 

• Pearson correlation  

(X,Y) = 1  perfect correlation     

(X,Y) = 0  no linear correlation  

CSU3(0-6)  1     L = 0, 2, 4, 6 correlated and form a band     SU(3)  QDS                        

  independent of L, highly correlated                          

SU(3) decomposition 

• PDS and QDS monitor the remaining regularity in the system 



SU5(L) = 0    U(5)-purity 

U(5) PDS 



SU(3) QDS 

CSU3(0-6)  1 

 

coherent SU(3) mixing                             

SSU3(L) = 0    SU(3)-purity 



Collective rotations associated with Euler angles,  and  d.o.f.   

O(3) & O(5) preserve the ordered band-structure, O(6) disrupts it  

Collective Hamiltonian 

c = 0 



 Summary 

• The competing interactions that drive a 1st order QPT can give rise to an  

   intricate interplay of order and chaos, which reflects the structural evolution 

 

• The dynamics inside the phase coexistence region exhibits a very simple pattern 

 

• A classical analysis reveals a robustly regular dynamics confined to the  

  deformed region and well separated from a chaotic dynamics ascribed to the  

  spherical region 

 

• A quantum analysis discloses several low-E regular nd -multiplets in the  

  spherical region and several regular K-bands extending to high E and L,  

  in the deformed region. These subsets of states retain their identity amidst  

  a complicated environment of other states 

 

• The regular sequences exhibit U(5)-PDS or SU(3) QDS 

 

• Deviations from this marked separation is largely due to kinetic rotational terms 

“simplicity out of complexity” Quasi symmetries  



Thank you 


