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Really this is a Neutrino Portal to
the Dark

» Dark matter is definitely there, but it seems to be
misbehaving.

x Experiments like LUX are ruling out large swathes of
the WIMP parameter space. ke, etal, PRL 112, (2014) | S

® A number of dark matter structure problems
persistently appear in observations. |

Feng, Kaplinghat, Huitzu, Yu, JCAP 07, (2009)
Spergel, Steinhardt, PRL 84, (2000)
Boylan-Kolchin, Bullock, Kaplinghat, MNRAS 415, (2011)
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'® Simulation image courtesy of Stelios Kazantzidis



The Universe also has lots of
ENtropy

= [here are a great many light relativistic particles left
over from the Big Bang: S/b ~ 10 k;, /b

= Mostly photons: n, = 411c¢m ™ °

x AlSo neutrinos: n, = 336¢m >

LD g,0" vy, v



Missing Satellites”? Maybe
not so much...

x Kinetic decoupling of dark matter and neutrinos sets
the cutoff mass for small scale structure:

Mew = 1.7 % 108 (Tieq /keV) > M,

i 0.062 keV (T)l/z(mx)1/4( Mg )
Kb $a%a%e
N (axa ) V2N g \TeV MeV

Mcut ocs 107 375 109 M@



Dark Matter self mteractlon

Probability density

= “Cusp vs. Core” and
“To Big To Fail” seem
to be related.
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gNFW B (DM inner slope) cNFW log r_,./kpc

. DM self interaction can
iIndependently solve
either problem.

A. Newman, T. Treu, R. Ellis, D. Sand, APJ 765:25 (2013)



SIDM needs a rich phenomenology
for scattering: L D gx o™X, X

® A massive scalar or vector exchange particle is

equivalent to Yukawa-potential scattering. This

iIntroduces velocity dependence to the overall cross
section.
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A. Loeb, N. Weiner, PRL 106 171302 (2011)



Different scattering regimes
lead to rich phenomenology

= [ulin, Yu, Zurek, PRD 87, 116007 2013: SIDM does
both simultaneously:

Repulsive force (ax=10"?%)

1000 =~~.
Mu -O\]‘ .

:\ -\lu‘-;‘~‘\

100F iy ==ne ™

1074 0.001 0.01 0.1 104 0.001 0.01 0.1
mg (GeV) mg (GeV)




All three structure problems

be solved

at once”?

® | . Aarssen, [. Bringmann, C. Pfrommer, PRL 109,
231301 (2012): Yes they can.

not enough flattening
of cuspy profiles

= J. Cherry, A. Fried
More parameter s
problems if DM Is

and, |. Shoemaker, arXiv:1411.10/71;

nace IS a solution for all three
not a thermal v relic.



| et’s not be cavalier

x Strong bounds on hidden neutr
from LEP, supernova neutrinos,
anninhilation or contact interactio

NO Interactions come
rare Kaon decay, DM
NS, BBN, cosmology.

® Neutrinos might still acquire hidden interactions through

their mixing with a sterile state.
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Mixing Portal Prescription

Go(LH)gn(vn H") Basic seesaw type operator

L 3 Similar to M. Pospelov, Phys. Rev. D 84, 085008 (2011)

A N Ve, O (Weltle -y =0

(Goldstone Boson associated

By . .
¢ ; @ with v, acquires mass when
H’ symmetry Is broken

Lo



An explicit vector boson
example

x» Our Lagrangian: L D gs¢"' vy, Vs

® Basic tree level scattering contributions:

. / B3 \/,// PR R e R
>\ X 2 \g %
\ assses /<\\ RS esestses TIPS ssssssseetic: VAVAYS \/u\f\/
do (v — D) do (vv — vv) do (Dv — ¢d)
dcos b d cos 6 dcost



The lceCube Detector

® \\Nant to probe

IceCube Lab

neutrino self ., ore
iInteractions with a
neutrino collider. T e

» Astrophysical S —— “{ N ’,i‘
Nneutrino sources are Il o e
fantastic et o
accelerators.

Image: C. Kopper, lceCube collaboration



HIgh energy protons and the
Cosmic Ray limit

pr Aty ntal
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x CR flux limit comes from
~1:1 correlation pbetween
observed CR protons and
the albove process.

Image: Waxman and Bahcall, PRL 59, 023002 (1999)



What needs to happen to
create a signal in lceCube?

%
® | argest potential cross section comes
from resonant scattermg

UV

%



lceCube found a signall

Showers +—e—

= 5.50 above * Tracks +--%---
expected 8
background. [
= Distribution  JE
consistent S
with extra- -
galactic
sSources.

Deposited EM-Equivalent Energy in Detector (TeV)

lceCube collaboration:; Aartsen, et al., arXiv:1405.5303



The lceCube signal and the
Cosmic Ray limit

pT Ny st
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Hidden Core

® CR flux limit comes from
~1:1 correlation between
observed CR protons and
the above process.
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® [he IceCube flux Is nearly
saturated!

Image: Waxman and Bahcall, PRL 59, 023002 (1999)



The Signal is Weird s e

® [here IS a conspicuous absence of some events.
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Deposited EM-Equivalent Energy in Detector (TeV)

lceCube collaboration:; Aartsen, et al., arXiv:1405.5303



Popular explanation

. Source effects: Source emission not understood.

Credit: External Shock

Meszaros & Murase :
Internal Shock the surrounding medium

Collisions betw. diff. 1
parts of the flow

~10"¢cm

MeV neutrinos at collapse’ [waxman & Bahcall 1997] EeV neutrinos from externz

[Gupta & Zhang, 2006] shocks [Dermer 2001]
[Murase & Nagataki 2006] [Waxman & Bahcall 2000]

TeV neutrinos from inside the star PeV-EeV neutrinos from flares
[Meszaros & Waxman, 2001] [Murase & Nagataki 2006]
[Razzaque et al. 2003]

Image: Kowalski, E., MPA talk (2007)
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Image: Loeb, A., Waxman, E., JCAP 5, (2006)




Scattering = Measurement
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We can put our differences behind us. For Science.
You monster.



Neutrino Mixing
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Relic Sterile Abundance

B. Dasgupta and J. Kopp, PRL 112, 031803 (2014)
S. Hannestad, R. S. Hansen, and T. Tram, PRL 112, 031802 (2014)
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Size of the mixing angle Is
critical
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Relic Sterile Abundance

In Medium Mixing Angle Population Fractions
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More ordinary decoupling

scenario;: 1, = 1TeV
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Relic Sterile Abundance
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1 his results In spectral
distortions 7., /7., ~0.66

Final v, sectrum Temerature Final v, sectrum Deenerac

Ttinal = (4/11)3T,

n]/ s5e5e 0.84 >< nthefr'ma/l



lesting the presence of g




A cartoon example

Fraction of IceCube events from
within a given redshift




Propagate neutrinos over
cosmological distances

® Sources and source evolution taken from H. Yuksel, et
al., APJ 683 (2008) and Hasinger, Miyaji, Schmidt,
Astron. and Astrophys. 441 (2005).

x Use most recent best fit ACDM parameters including
Planck data: H (z)° = H? [QA + Qo (L 2)" + Qo (1 + Z)ﬂ

® Use FRW scaling of relevant guantities:
MRL e s 2)°
T (z2)=T)o(l+ 2) dry (2) =
Tt st R S B

cdz
(1+2)H(2)




This defines the optical depth

e /Orp Ny, (2) 0w (2) dry = /OZi Cny(sl(i)j)l}ggi -

We'll take a moment to define of a few scattering
regimes:

"MFEFP < 50Mpc”, 7 > 1 for r, = 50 Mpc

“IceCube isotropic sources”, 7 > 1 for r, > 50 Mpc

“C'vB optically thin”, 7 > 1 for z; = 10



Fascinating new wrinkle:

Mon. Not. L Astros. Soc. 000, 113 (2014 Prisstod 11 Ju

2014
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Are both BL Lacs and pulsar wind nebulae the
astrophysical counterparts of IceCube neutrino events?

P. Padovani' and E. Resc

Burvpeon Southern Observalory, X

* Tochnusche Ussverntdt Minchen, Jemes- Frask-Sir
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How does all of this
fit with SIDM? '

LD gxd" Xy, X + g 0" vy, s

IceCube
Symmetric Thermal Relic
Dwarf scale SIDM
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DM coupling, gx DM coupling, gx




Projecting over all m.

my Projection, g, =g,

B »—DM, IceCube Isotropic Sources
v—DM, IceCube 30 correlation
5 v—DM, BL Lac Source Correlation
B - DM, MFP <50 Mpc
I CuB Optically Thin

10t

DM coupling, gy

10

DM coupling, gy

Nearby source correlation is significant at the 3o level
Nearby (z<.212) event correlation is consistent with
the original predictions for AGN!




Optical Depth

7(2) = (o) ()05 (2) drrp (2)

x Scattering probability:  Pdz =1 —¢e "

® \\Which channels albbsorb neutrinos depends on our
choice of gs and 6.:

Absorption Regimes with

107 —

5 367g° o°
Resonant 7 & PisPys—=*
¢ |
. - 39 107
Continuum 7 & PjsPys 75

g || — i
10 Both




Scattering on a Thermal
Background

x The CvB has an effective temperature: T, = (4/11)"/° T,

® \\hich retains the Fermi-Dirac shape:
1
lulp,1y) = ep/Ty 1 ]
® SO our cross sections must be convolved with the
thermal motion of the C'v B :

G J dp’avy (Ey,pomw) fu (P, 1))
i | ap?f, (p.mu, T,)




Thermal Broadening

= Non-relativistic: s~ 2m,E,

x Relativistic: s ~2F, (\/}93 + m?2 — p, €cos (9)

32t £+

(s <3 m?b)2 + (mals)

dcost + ...

0(DV—>DI/)O</

1 167s

Resonant cross section comparison
M, =10.0 MeV, T, =0.1697 meV




Some results:

High energy v spectra, m, =1 eV

9s =0.07 ) sin 03 =0.1 ’ mqg =10.0 MeV
g, =2.0 ,sin 6, =0.015 , m =400.0 MeV

WB Limit + GZK
IceCube Atm Bkg
IceCube Best Fit




How does this fit with the
observed lceCube data’’

Lo? High energy v events, lightest m, =0.01 meV Very High energy v events, lightest m, =0.01 meV

Absorbed, m, =10 MeV Absorbed, my 10 MeV
Absorbed, m, =400 MeV

Absorbed, mg =400 MeV
= WB limit + GZK + Bkg

—— |ceCube Atm Bkg - WB limit + GZK + Bkg

IceCube Flat Spectrum + Bkg IceCube Flat Spectrum + Bkg
A A |ceCube data

-
5.5 6.0

log(E,/GeV)




The lceCube best fit combined
with correlation data

High energy v spectra, m, =1 eV

m+ Projection,

A

v—DM, IceCube Isotropic Sources
v—DM, IceCube 30 correlation
v—DM, BL Lac Source Correlation
v—DM, MFP <50 Mpc

CuvB Optically Thin

g,=0.07 ,sin 6, =0.1 , my =10.0 MeV

g5 =2.0 ,sin 6, =0.015 , m, =400.0 MeV
== WB Limit + GZK

IceCube Atm Bkg

IceCube Best Fit
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, High energy v events, lightest m, =0.01 meV

Absorbed, m, =10 MeV

Absorbed, m, =400 MeV
= WB limit + GZK + Bkg
=== |ceCube Atm Bkg

IceCube Flat Spectrum + Bkg
A A |ceCube data
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Side bonus: We might be
able to measure the ¥ mass

|
scale! 72 .




Conceptual Progress:

= A neutrino portal goes a long way to tying up some the
loose threads of dark sector physics.

Y=
\.g
N =,
i~ 1] N
! = L“ll Lah iy
Q'-I' FWY‘A“”
4
-t
o SRR |
.- - - ~ ey "y, ' . " gNFW B (DM inner slope) ' ¢ —

» Further it does so In a way that iIs eminently testable
with lceCGube.



Some things need more
investigation

x N effective is unchanged in our minimal model, but TeV
- GeV decoupling temperatures for the dark sector will
impact N effective.

x | ate time re-coupling creates a good deal of neutrino
rest mass. Does this violate the bounds on the sum of

ight neutrino masses’?

® Neutrino self interactions with MeV scale mediators will
do something in core collapse supernovae.



Conclusions:

® Hidden neutrino interactions provide a novel and
surprisingly apt model of the high energy neutrino
signal in lceGube

» |[f these hidden interactions are a byproduct of a
neutrino portal to the dark sector, an astonishing chain
of coincidental solutions to dark matter structure
problems issue forth.

x |ceCube is taking data right now, and will eventually
make a definitive statement on this model!



1 hank you very much!



