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What can low-energy nuclear physics
do for fundamental physics?

Electromagnetic + weak observables Unitarity of the CKM matrix: (other work | did)
Can constrain nuclear Hamiltonian precisely. If CKM matrix is not unitary it could signal beyond

Is the neutrino-C12 cross section solved? standard model physics in the form of new
Electron-scattering form factors, generations of quarks.
and many other things... Places limits on the existence of Scalar currents.

Permanent electric dipole moment (EDM) of light nuclei (He-3, Li-6): (I'd like to do)

If experimentally measured would imply Parity and Time-reversal would be violated.
Note this is not necessarily the 8-term in the QCD Lagrangian.

Neutrinoless double-beta decay? (e.g. Ge-76).

If observed implies that the neutrino is its own anti-particle, i.e. Majorana.
Furthermore one could say something about the actual masses of the neutrinos directly

not just the differences (i.e. mass hierarchy).
1) See Avignone lll, Elliott, Engel in RMP 80 (2008) for a review
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O Motivation

Nuclei can be excited by external fields such as electromagnetic waves (e.g. electric or
magnetic dipoles). These probes are also excellent tests of the nuclear Hamiltonian and also

can give insight into collective motion of nuclei.

Examples of collective modes:

4
The monopoles are breathing modes of the nucleus. ‘.‘* ¢ >
The proton or neutron fluids can either be in phase (isoscalar) v
or out of phase (isovector). Isoscalar Isovector
The compressibility of finite nuclei can be determined from monopole monopole
moments of the isoscalar monopole strength function.

The electric-dipole (E1) has the well known Giant Dipole
Resonance and can be used to study deformation in nuclei.

The magnetic-dipole (M1) can be used to study the scissor Electric dipole
modes in heavier nuclei.

Phenomological excitation mechanisms of nuclei
Proton fluid in red, Neutron fluid in blue 5



Examples of Giant Dipoles
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The Giant Dipole Resonance (GDR) is excited in
nuclei by gamma rays. The interesting point is
that almost all nuclei exhibit GDR resonances at
the same excitation energy.

Photon Energy - MeV

In spherical nuclei the GDR is one peak. In deformed nuclei the GDR splits along the
principal axis of oscillation. Thus studies of GDR gives us one clue to deformation in nuclei.

Can theory reproduce these results? 4



Examples of monopoles

By collective states we mean that roughly 50% or more of the total strength is found in one
or a few nearby states.

The strength function is: S(w) = EK‘Pf ‘é|111l>
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Fundamental
theory of strong
interactions

Applications: Strength function

Isovector Monopole [ o+
Neutron halo __ He: J,1)=(0".1)

Only T=1 states allowed

I “Li: aD=(1"0
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Isovector monopole for
®He and Li g.s




QCD (Chiral) Effective Field Theory Softened interaction
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Fundamental EFT introduces relevant Similarity group renormalization
theory of strong dof for nuclear scales: decouples the high- and low-momentum
interactions nucleons and pions components of interaction.
No Core Shell Model Eigenvalues, Wavefunctions Applications: Strength function
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4 Nuclear forces from QCD
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Quarks and gluons
interact by exchanging

@uons.

~

At high momenta (energy) QCD is perturbative. The coupling constant o,
is small and one can use perturbation theory to evaluate processes.

At low momenta (energy) QCD is non-perturbative. The coupling
constant . is large making perturbation expansions inappropriate.

* Y,

Khiral Effective
Field Theory

N N

m A low-momentum theory is built from the symmetries of QCD

EFT introduces relevant
degrees of freedom:
nucleons and pions

Effective Field theory is the bridge between QCD and nuclei.\

that has as degrees of freedom nucleons interacting via pions.

The (unresolved) high-momentum components are encoded in
low-energy constants that are determined from experiments.

Contact interactions
wp — contain all the physics of
== A high-momenta; other
mesons or excitations of
nucleon (Delta isobar)




No-Core Shell Model

Hamiltonian is translationally invariant.
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NCSM has two parameters: Nmax and hQ

We form an anti-symmetric basis made up of Slater determinants. Single particle states are
taken as the harmonic oscillator states. The Hamiltonian is expressed in this basis and is

diagonalized. This gives the energy spectrum and wavefunctions.




Strength functions from Lanczos
wavefuncsons of the soronto seteme o H|W,) = E|W,)

Acting on the initial wavefunction with the desired operator creates

a starting pivot for Lanczos which will now only connect to other 0 ‘ W > — ‘p>
i i

states as allowed by selection rules of the operator.

Example: E1 operator connects states that have AT=1, AL=1, Ar=-1.
A

~ (1
It’s important to use the translationally invariant operator, e.g E1 in B10: O = 5 EI’YlO‘EZ
i=1
The pivot becomes the starting vector for a new 02—
calculation using the Lanczos method and the o5l DeNmAES GOMED) 25 oo
Hamiltonian. Lanczos will generate the 2n-1 moments of | - “ ‘ | ]
the strength function. 2 oltnlil ESTEE ST
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Creating the reduced (BE1) strength function

We want to calculate the reduced strength function of the E1 operator; in other words BE1.
You want to average over the initial state and sum over the possible final states taking into
account all the different polarizations of the electric-field.

1=0 = =2

=y
fa SA T N

J=1*
M=-1 M=0 M=1 M=-1 M=0 M=1 M=-1 M=0 M=1

Mathematically all these components can be determined by using the reduced matrix element

]' ! / y / . °
SW) =577 > > ) WJI'M'|E1,|IM)’5(E'— E—w)  This procedure requires that you know

- ];11\3 q Jﬁ‘-’f what the angular momentum of each
- z:{ ( - = )]6(E’ —E —w), excited state is (as shown by the Clebsch
7 in the BE1 expression).

(S| EL][) >
27 +1
2J' +1
(2J + 1)(JM10|J" M")|?

B(E1;J — J') =

b [(J'M'|E1,|JM)|?
11




Technical details regarding pivot

We want to calculate the reduced strength function of the E1 operator; in other words BE1.
This requires that you know what the angular momentum of each excited state is.

1

S(w) = S S S WM B [IM)PS(E — E - w) o WTIEL) P
2T H1 o L L a B(ELJ — J') = S5
B(EL;J — J') _ 2J" +1 e 2
- Z[ 3 LS(E' —E-w), a7 Djamoganp) < M 1B IM)]

JI

Applying the E1 (rank 1) operator to an angular momentum state J results in a superposition
of angular momentum states in the pivot.

A Impossible to determine J of unconverged
0(E1)|]> B a|J B 1> + b|]> + C|J + 1> excited states when Lanczos now runs

But pre-diagonalizing the pivot with J? gives us three pivots with good J.

These individual pivots only produce states with the same J throughout the ex. spectrum
hence we can determine what the appropriate Clebsch is in the BE1 formula.

We calculate the strength function for each of the three pivots with good J and then
form the BE1 strength function. The total BE1 strength function is the sum of the three parts.

12



Electric dipole (E1) for Boron-10

Interaction details: A and hw combination
- -1 -
Chiral N3LO (NN only) SRG A=2.02 fm! At A=2.02 fm™ and hw=20 MeV one
No Coulomb force included. reproduces the binding energies as well
Isoscalar interaction (Vpp = Vnn = Vpn) as the neutron separation energy of

Helium isotopes (*He, ®He, 8He).

/ NCSM details \

Nmax=3-7 (now 9) including both parities in the basis.

500 Lanczos iterations for calculating the spectrum (converge 10 lowest states).
150-500 Lanczos iterations to calculate strength function.

Both M=0 and M=1 basis is used to create BE1 values (ask me about details).

o /




B(E1) strength (fmz)

BE1 strength with increasing basis size
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How to extrapolate
this distribution?

Perhaps it is best to
extrapolate centroids?
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Neutron

Neutron escape widths

escape
time
Experimentalists measure cross sections. How do we compare our results with data?
Need to introduce finite widths in our strength functior o> e
I [ r=es] |
To assign widths to our discrete states we use neutron 5. B10 Nmax=7 ]
escape widths because these typically have the fastest BE1 strength
decay rates. . 5 2 0 —— i
— > | Sy
r(a) Sn) _ 2)/spf)l)®l =
2 005 —
hc (kR)" I 1 ]
2
Yo =|—2 P =kRV| V,= ‘ l
g (MR l : 94 3(kR)* + (kR)" %**#ﬁ“!ﬂ ‘ LO‘( ')élo s%‘ ?thla VH) Mk
Sp width Penetration factor depends on partial Neutron i e il
wave. Wave vector: k = ,2uFE, unbound

B9 states

Escape energy

‘2

0F| = |[(°B: JuT| x (3 (nljs 1/2)[] "™ [1°B; J;T)

Jd

B10 Sn - - B9 gs

The spectroscopic factor is the overlap of a °B+n (coupled) wavefunction with the initial 1°B state



Is the spectroscopic factor unity to gs?

To assign widths to our discrete states we use neutron Negtrond
escape widths because these typically have the fastest unboun

decay rates.
r(a) _ Sn) — 2»}/;])]@ Escape energy

We initially assumed the square of the spectroscopic factor

is unity for a neutron-unbound state going to the B9 B1OSn == Yomos BY gs
ground-state.

But is that actually the case?

B9 states

Neutron

. . unbound
In reality the B10 neutron-unbound state decays into a

number of B9 excited states and perhaps the ground-state.
This being the case we effectively weigh the neutron-escape
energy that we use in the penetration factors by the
fragmented spectroscopic factors.

In general it is very difficult to calculate all the spectroscopic factors for

every state in B10 in our BE1 strength function. We thus build a model

from small space calculations that captures the fragmentation of the

spectroscopic factors using empirical Nmax=3 and Nmax=5 data. 17



Spectroscopic factor model

B9 gs
- / - -
Performed Nmax=3 calculations for 250 states in B10 that &3 I‘/ =R
. e e e e 1
can decay into 100 B9 states. Needed about 3000 Lanczos Ha l:; E | [ ewave] 3
. . Py =EUTREN B MUY P EETAN BRTTANE: B = TR PR N ATATA AT B
iterations to get those 250 states converged (good JT). 03F | 3 oF ‘ E
Y S [T - SR L = T E
03F 9 03F 3
02F 4 02F -
Assume all we need is the norm, centroid and variance e RACAAREES N Fe 3
of the distribution to describe the spectroscopic factors.  SiE...loicwe 3 S5 mw il 3
03F - 03 E
Use a normalized Gaussian for this purpose. SR a0 ‘ R o l‘ E
ol b i ot ]
03 - 03 -
o . . ] ' %“f%::.l...l...m ..... Lo, E %éz.....m...|...|.|_.I...::
These quantities are fitted with functions that fit the ® Neuron scape Encrgy MeV)  Neutton escape energy (MeV)

(smoothed) data as well as respect physical constraints.
Recalculate the width of a state

05 prrrr T T Il .
04l N(x)ld).25*Ex|p(—0.05x)|+2/12 l d oskb N(x)|:10/12—0.I38*Exp(—(|).028‘x)l ] adaCCo rd]n g to
R T S I .
ZO~2__ — s-wave ] 0»4__ — d-wave ] unpboun )
L _ : [(E,)=2 E
0 o'::::I:::TI::::I::::I::::':::' '1‘ g ( x) )/Sp l( )
) i A I o comasmn 1 [0
s sk e . :
S sk e _ § : Integrate over all B9 states
A A E | below B10 state.
£nE E E l Spectroscopic model
S0k J _ ?
S¢ 7 5 .
00] lé‘” ll() ]1|5I I21()]”[2[5””30 OOIII]!SII[III()]]IIIISII“2|0H”215IIH3O Bg gs

Ex energy above Sn (MeV) Ex energy above Sn (MeV) 18



Spectroscopic model vs actual widths

The spectroscopic model significantly
reduces the widths of our states as
compared to the “relativistic” widths we
were using before (where we assumed SPF
= 1). The model also reproduces on
average the width of the states calculated
from spectroscopic factors.

The spectroscopic model works quite well
when you compare what the prediction of the
width is compared to the actual width (from
Nmax=3 or Nmax=5).

20 T I T I T I T I T I
—— Using Spectroscopic factors
- | — Model of spectroscopic factors
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The cross section is determined in Bohr& Mottelson vol Il

Cross-sections
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Nmax=9 calculation (in progress) may
provide much better agreement with data.

How should cross section be extrapolated? [
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Brink hypothesis

In 1955 Brink hypothesized that if ground-state supports a dipole resonance then so will the
excited states. The GDR should appear at the same energy provided you take into account the
excitation energy of the excited state (i.e. all energies are relative to the states considered).
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Our calculations confirm Brink hypothesis for first 10 states of B10.
The same trend is found for other nuclei we have looked at.



G (mb)

Conclusions

Collective motion in light nuclei can give us insight into resonance phenomena.

Ab initio strength functions can give insights into how light nuclei exhibit collective motion.
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END of presentation



PRL 103, 082501 (2009)

Softened interactions Jurgenson, Navrati, .
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BEI strength (fmz)

Theory (using relativistic widths) vs experiment
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Neutrinoless double beta-decay

Ordinary double beta decay (2v) does indeed happen in nature. It is a “second-order” process

meaning it is “rare” (i.e. long half-lives on the order of 10?! years).

On the right in a) | show the typical a) Z+1 b)
energy level diagram of BB-decay.

The parent is an even-even nucleus 0*

which implies it is more tightly

bound (by pairing) than the Z+1 nucleus
but less-bound than the Z+2 nucleus.

(Tih)™
Neutrinoless double beta decay or BB (Ov) requires
that neutrinos have mass (which they do) and that

= G1,(0pp. Z)| M, |?

they are their own anti-particle (Majorana).

The minimal model simply requires that light-neutrinos
are exchanged amongst the W bosons. Note the process is lepton-
number violating and depends on the masses of the neutrinos.

3

The masses enter through: (g =

(T9H) ™ = G, ( Qpp. 2)|My,)>



