Towards a Better Understanding of Jets

Andrew Hornig LANL Jan 13, 2015

The Big Picture systematically improve Monte Carlo perturbative physics Analytical Tools (SCET) **Event Generators** new theory insight tune precisely calculate & verify Jet substructure

Outline

- Jets from SCET (progress in multijet observables)
- * Jet Substructure from Event Generators ("Q-jets")
- * SCET from Jet Substructure ("Q-thrust" and NGLs)
- * Event Generators from SCET ("GenEvA")

What is a Jet?

high-energy event:

* organizing principle (beyond fixed-order calculation)?

What is a Jet?

* (soft & collinear) singularities → organize through factorization

* can be achieved via Effective Field Theory (in particular, Soft-Collinear Effective Theory, or SCET)

SCET and Thrust

* thrust measures "jettiness" of e+e- events:

$$\tau = \tau_L + \tau_R$$

$$\tau_{L,R} = \sum_{i \in L,R} E_i \cos \theta_i^{L,R}$$

- * small thrust \Rightarrow all particles close to thrust axis (very jetty)
- * fixed order calculation not possible in this region:

$$\frac{1}{\sigma_0} \frac{d\sigma}{d\tau} = 1 + \alpha_s \left(a_{12} \frac{\ln \tau}{\tau} + a_{11} \frac{1}{\tau} + a_{10} \right) + \alpha_s^2 \left(a_{23} \frac{\ln^3 \tau}{\tau} + a_{22} \frac{\ln^2 \tau}{\tau} + a_{21} \frac{\ln \tau}{\tau} + a_{20} \right) + \cdots$$

SCET and Thrust

* factorization:

$$\frac{d\sigma}{d\tau} = H * J_n \otimes J_{\bar{n}} \otimes S_{n\bar{n}}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$
virtual coll. real soft real

* resummation:

* matching:

$$(d\sigma)_{\text{matched}} = (d\sigma)_{\text{resummed}}$$

 $+ (d\sigma)_{\text{non-singular}}$

Non-global Logs in Thrust

Dasgupta, Salam hep-ph/0104277 Kelley, Schwartz, Schabinger, Zhu 1105.3676 AH, Lee, Stewart, Walsh, Zuberi 1105.4628

* arise when separately measure L & R thrusts

Multijet Events from SCET

Ellis, AH, Lee, Vermilion, Walsh 1001.0014

* factorization:

$$\frac{d\sigma}{d\mathcal{O}} = H_N * J_1 \otimes \cdots J_N \otimes S_1 \dots N$$

$$\text{jet function}$$

$$\text{(coll. splittings)}$$

$$\text{hard}$$

$$\text{function}$$

* 3 jet events vs Pythia

- * much more types of NGLs....
- * currently extending to pp collisions with T. Mehen (involves soft function with p_T veto and rapidity cut)

Outline

- * Jets from SCET (progress in multijet observables)
- Jet Substructure from Event Generators ("Q-jets")
- * SCET from Jet Substructure ("Q-thrust" and NGLs)
- * Event Generators from SCET ("GenEvA")

What is a "Q-Jet"?

* classical (deterministic) substructure analyses

* Q-Jets: use "all" clusterings ⇒ mass distribution *for each jet*

Tree Weighting

- * can't sample all clusterings/"trees" (~10!-20!)
- * instead, sample around kT-like (or CA-like) randomly:

weight for particle pair (ij)

$$\omega_{ij}^{(\alpha)} \equiv \exp\left\{-\alpha \frac{(d_{ij} - d^{\min})}{d^{\min}}\right\} \qquad \text{where} \qquad d_{ij} = \left\{\begin{array}{c} d_{\mathbf{k_T}} \equiv \min\{p_{Ti}^2, p_{Tj}^2\} \Delta R_{ij}^2 \\ d_{\mathbf{C/A}} \equiv \Delta R_{ij}^2 \end{array}\right.$$
 "rigidity" parameter

* this gives distribution for each jet (stable after ~10-100 trees)

New Observables from Q-jets

* different for different algorithms:

Variation larger for QCD jets (no real m_J scale)

⇒ "Volatility":

$$\mathcal{V} = \Gamma/\langle m \rangle$$

$$\Gamma \equiv \sqrt{\langle m^2 \rangle - \langle m \rangle^2}$$

Experimental Success of Volatility

* compare to standard candle (N-subjettiness):

Thaler, Tilburg 1011.2268

* BOOST2013 working groups: understand correlations

Statistical Improvement

- * standard measurements have Poisson production and binomial tagging
- * instead, weighted tagging based off Q-jet overlap

- * in general, we find $\frac{1}{\sqrt{N}} \le \left(\frac{\delta N_T}{N_T}\right)^Q \le \frac{1}{\sqrt{\epsilon N}}$ classical (binomial) tagging
- * found ~25% improvement on both S/ δB and $\delta m/m$ measurements!

Outline

- * Jets from SCET (progress in multijet observables)
- * Jet Substructure from Event Generators ("Q-jets")
- SCET from Jet Substructure ("Q-thrust" and NGLs)
- * Event Generators from SCET ("GenEvA")

Q-Jet Volatility Calculation (?)

* non-trivial mass Q-dists require at least O(10) particles \Rightarrow need O(α^{10}) calculation....

* also not well-suited for SCET (V \rightarrow 0 not "jetty")

Why are Q-Jets different?

- * 2 reasons:
 - 1. NOT deterministic
 - 2. NOT energy-flow variable (event/jet shape)(depends on clustering, not just particle 4-momenta)
- * Can we disentangle these two properties???

Q-Thrust

* cluster L, R with some probability:

$$\delta(\tau_{L} - k^{+}/Q)\Theta\left(\theta < \frac{\pi}{2}\right)$$

$$\to P_{L}(\theta)$$

$$+\delta(\tau_{R} - k^{-}/Q)\Theta\left(\theta > \frac{\pi}{2}\right)$$

$$\to P_{R}(\theta)$$

- * disentangle Q-Jets/N-subjettiness (un)correlation???
 - 1. non-deterministic (like traditional Q-Jets)
 - 2. *but* now energy-flow/shape var

Q-Thrust

* Examples:

Q-Thrust

- * definition for higher orders IR safety:
 - * must use clustering!
 - * IR safety requires (in collinear limit):
 - before splitting:after splitting:

$$P_L(\begin{subarray}{c} collinear \\ limit \end{subarray} P_L(\begin{subarray}{c} collinear \\ limit \end{subarray} P_L(\begin{subarray}{c} collinear \\ limit \end{subarray})$$

2 Loop Results

"fuzzy" region ~ 1 - a clustering size ~ δ < 1 - a clustering region ~ Δ > 1 - a

* Cancellation of NGLs:

$$\delta = 1 - a \label{eq:delta_eq}$$
 (cluster everything in fuzzy region)

Outline

- * Jets from SCET (progress in multijet observables)
- * Jet Substructure from Event Generators ("Q-jets")
- * SCET from Jet Substructure ("Q-thrust" and NGLs)
- Event Generators from SCET ("GenEvA")

Overview of Event Generation

- Loops
- Logs
 - shower (LL)
 - QCD resummation
 - SCET
- Legs
 - -Madgraph
 - -Alpgen
 - -AMEGIC++
 - -calchep

MC@NLO, POWHEG

CKKW, MLM

GenEvA (v0.1), MENLOPS = 1 NLO + many LO + PS

GenEvA (v1.0) = many NLO + PS

Bauer, Berggren, Dunn, AH, Tackmann, Vermilion, Walsh, Zuberi 1211.7049

MC@NLO: Frixione, Webber POWHEG: Nason et al CKKW: Catani, Krauss, Kuhn, Webber MLM: Mangano

GenEvA v0.1: Bauer, Tackmann, Thaler

MENLOPS: Hamilton, Nason; Hoche, Krauss, Schonherr, Siegert

The Parton Shower (PS)

• LO for lowest multiplicity, higher mult. filled w/ parton splittings

• simple phase-space picture

<u>αΨ</u> n	α Ψ _{n+1}	α Ψ _{n+2}	α Ψ _{n+3}		
LO Matrix	Parton	Parton	Parton		
Element	Shower	Shower	Shower		

The Parton Shower (PS)

• beyond tree level, will need partons ≠ jets!!

How to Merge LO + PS (e.g., CKKW/MLM)

• multiple LO Matrix Elements

NLO + PS (MC@NLO, POWHEG)

- add virtual corrections?
- rows are IR-safe, finite quantities, but not columns!

NLO + PS (MC@NLO, POWHEG)

• need some "subtraction":

GenEvA (many NLO + PS)

• Can't simply extend this idea to multiple NLO \Rightarrow use SCET:

	dΦn	dΦ _{n+1}		dΦ _{n+2}		dΦ _{n+3}					
n (excl.)	SCET NLO virt. + real (excl.)	Parton			Parton Shower			Parton Shower			
n +1 (incl.)			SCET NLO			Parton			Parton		
n + 2						SCET NLO	Parton			Parton	
TO ZTO DISE											

Summary systematically improve Monte Carlo perturbative physics Analytical Tools (SCET) **Event Generators** new theory insight tune precisely calculate explore & verify Jet substructure multijets with jet shapes Q-jets Q-thrust & NGLs GenEvA