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Outline
❖ Jets from SCET (progress in multijet observables)!

❖ Jet Substructure from Event Generators (“Q-jets”)!

❖ SCET from Jet Substructure (“Q-thrust” and NGLs)!

❖ Event Generators from SCET (“GenEvA”)



What is a Jet?
❖ high-energy event:

=
??

❖ organizing principle (beyond fixed-order calculation)?



What is a Jet?
❖ (soft & collinear) singularities ➝ organize through factorization!

!

!

!

!

!

❖ can be achieved via Effective Field Theory (in particular, Soft-
Collinear Effective Theory, or SCET)

= Soft
+ power !

corrections!

jet (coll. splittings)

hard process



SCET and Thrust
❖ thrust measures “jettiness” of e+e- events:!

!

!

!

!

❖ small thrust ⟹ all particles close to thrust axis (very jetty)!

❖ fixed order calculation not possible in this region:
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SCET and Thrust

Soft
+ power !

corrections!

jet function !
(coll. splittings)

hard function
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Non-global Logs in Thrust

Thrust Axis!
(classical)
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Refs.[5,19,20]studiedNGLsof⇤/Qincrosssections
vetoingradiationwithtotalenergygreaterthan⇤inan-
gularregionsoutsideoffoundjets.Thoughahardscale
Qappearsintheseratios,wefoundin[21]thattheNGLs
stillarisefromconsideringbothscalesintheratiotobe
softandlatertakingoneofthemtoQinaninclusive
limit.

In[21]wemadeprogressinunderstandingtheori-
ginofNGLsine↵ectivefieldtheory.Weconsideredthe
factorizeddijetinvariantmassdistribution�(m1,m2)in
e+e�collisionsproducingback-to-backjets,andcalcu-
latedtoO(↵2

s),asalsoin[22],thehemispheresoftfunc-
tionS(kL,kR).Thesecalculationsclarifiedtheoriginof
NGLsinanEFTframeworkasthedependenceofasoft
functiononratiosofmultiplesoftscales,andrevealed
newsubleading(single)NGLsandnon-logarithmicnon-
globalfunctions.

TheseNGLsareorganizedintoamultiplicativefactor
enteringthetotalcrosssection,withtheleadingNGLs
takingthegenericform

SNG(µ1/µ2)=1�↵2
s

(2⇡)2
CFCAS2ln2µ1

µ2
+···.(2)

Hereµ1,2arethescalesatwhichsoftradiationisprobed
indi↵erentsharply-dividedregions.Forthehemisphere
massdistributionµ1,2=m2

1,2/QandS2=⇡2/3.For
the⇢Rdistribution,µ1=Q⇢Rwhileµ2=Qdueto
totalinclusivityinonehemisphere.Thecoe�cientS2

isageometricmeasureoftheregionintowhichthetwo
softgluonscontributingtoaNGLcango.Thefactthat
itvarieswiththesizeofthisregionisduetotheNGL
arisingfromapurelysoftdivergenceofQCD.Techniques
toresumNGLsusingnumericalfitsinthelarge-NClimit
ofQCDwereintroducedby[4],butanalyticresummation
ofNGLsinreal-worldQCDremainsanopenproblem.

Inthisworkweseektoextendtheintuitiongainedin
[21]bystudyingamoreexclusivesetofcrosssections.
Westudynon-globalpropertiesofanexclusivejetcross
section�(m1,m2,⇤),wheretheinvariantmassesm1and
m2oftwojetsofsizeRproducedinane+e�collision
atcenter-of-massenergyQaremeasured,withaveto⇤
ontheenergyofadditionaljets.Weconsiderfindingthe
jetsusingvariousalgorithms—cone,anti-kT,Cambridge-
Aachen,andkT[23–28].WewillfindthatNGLsof
theratioofthejetvetoandthejetmasses⇤/m1,2

arepresent,inadditiontoNGLsoftheratioofmasses
m1/m2.Wecalculatethecoe�cientsonlyofleadingdou-
bleNGLs↵2

sln2(µ1/µ2)inthispaper.Therelevantscales
forthisobservableareshowninFig.1foraparticularhi-
erarchyofm1,2and⇤,howeverourresultsarevalidfor
anychoicesuchthatQ�m1,2�m2

1,2/Q,⇤.
In[21],wediscoveredthatatO(↵2

s)NGLsoftwosoft
scalesµ1,2canbeconstructedfromseparatepiecesde-
pendentontheratioofthefactorizationscaleµtoone
physicalscaleatatime.Namely,theregionofphase
spacewhereoneofthesoftgluonsenterstheregionsen-
sitivetothescaleµ1andtheotherenterstheregion
sensitivetoµ2generatesthedoublelog↵2

sln2µ2/(µ1µ2),

Hard scale

Left jet scale

Right jet scale

Soft scales

µH=Q

µL
S=m2

1/Q

µout
S=⇤

µR
S=m2

2/Q

µL
J=m1

µR
J=m2

FIG.1:Therelevantscalesintheexclusivejetmasscross
sectionwithanenergyveto,⇤outsideofthejetsisshown
foraparticularchoiceofthehierarchym2

2⌧⇤Q⌧m2
1that

givesrisetolargenon-globallogs.Ourresultsapplytoany
choiceofm1,2and⇤thatsatisfiesQ�m1,2�m2

1,2/Q,⇤,
whichmaintainstheseparationbetweenhard,jetandsoft
scales.

whiletheregionswheresoftgluonsenteronlyregion1or
onlyregion2generate↵2

sln2(µ/µ1)and↵2
sln2(µ/µ2).In

[21]wederivedfromRGinvarianceofthecrosssection
andIRsafetyofthesoftfunctionthatthecoe�cients
oftheselogsareconstrainedsothattheµ-dependence
cancels,butanNGL↵2

sln2(µ1/µ2)isleftover.Analo-
gouslyfor�(m1,m2,⇤),thethreesoftphasespacere-
gionsthatgiverisetotheNGLsatO(↵2

s)areshown
inFig.2.Eachconfigurationcontributeslogarithmsof
µoverasinglescale,the“in-out”regionscontributing
logs↵2

sln2µ2/(⇤m1,2),andthe“in-in”regioncontribut-
inglogs↵2

sln2µ2/(m1m2).Thesecombinewithsingle-
regioncontributionstogiveNGLsof⇤/m1,2withcoe�-
cientsfOL,ORandofm1/m2withcoe�cientfLR.These
coe�cientsgivethegeometricfactorS2inEq.(2).IR
safetyandRGinvariancewillallowustoderiveaddi-
tionalstrongrelationsamongthesedi↵erentcoe�cients.
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Refs. [5, 19, 20] studied NGLs of ⇤/Q in cross sections
vetoing radiation with total energy greater than ⇤ in an-
gular regions outside of found jets. Though a hard scale
Q appears in these ratios, we found in [21] that the NGLs
still arise from considering both scales in the ratio to be
soft and later taking one of them to Q in an inclusive
limit.

In [21] we made progress in understanding the ori-
gin of NGLs in e↵ective field theory. We considered the
factorized dijet invariant mass distribution �(m1, m2) in
e+e� collisions producing back-to-back jets, and calcu-
lated to O(↵2

s), as also in [22], the hemisphere soft func-
tion S(kL, kR). These calculations clarified the origin of
NGLs in an EFT framework as the dependence of a soft
function on ratios of multiple soft scales, and revealed
new subleading (single) NGLs and non-logarithmic non-
global functions.

These NGLs are organized into a multiplicative factor
entering the total cross section, with the leading NGLs
taking the generic form

SNG(µ1/µ2) = 1 � ↵2
s

(2⇡)2
CF CAS2 ln2 µ1

µ2
+ · · · . (2)

Here µ1,2 are the scales at which soft radiation is probed
in di↵erent sharply-divided regions. For the hemisphere
mass distribution µ1,2 = m2

1,2/Q and S2 = ⇡2/3. For
the ⇢R distribution, µ1 = Q⇢R while µ2 = Q due to
total inclusivity in one hemisphere. The coe�cient S2

is a geometric measure of the region into which the two
soft gluons contributing to a NGL can go. The fact that
it varies with the size of this region is due to the NGL
arising from a purely soft divergence of QCD. Techniques
to resum NGLs using numerical fits in the large-NC limit
of QCD were introduced by [4], but analytic resummation
of NGLs in real-world QCD remains an open problem.

In this work we seek to extend the intuition gained in
[21] by studying a more exclusive set of cross sections.
We study non-global properties of an exclusive jet cross
section �(m1, m2, ⇤), where the invariant masses m1 and
m2 of two jets of size R produced in an e+e� collision
at center-of-mass energy Q are measured, with a veto ⇤
on the energy of additional jets. We consider finding the
jets using various algorithms—cone, anti-kT, Cambridge-
Aachen, and kT [23–28]. We will find that NGLs of
the ratio of the jet veto and the jet masses ⇤/m1,2

are present, in addition to NGLs of the ratio of masses
m1/m2. We calculate the coe�cients only of leading dou-
ble NGLs ↵2

s ln2(µ1/µ2) in this paper. The relevant scales
for this observable are shown in Fig. 1 for a particular hi-
erarchy of m1,2 and ⇤, however our results are valid for
any choice such that Q � m1,2 � m2

1,2/Q, ⇤.
In [21], we discovered that at O(↵2

s) NGLs of two soft
scales µ1,2 can be constructed from separate pieces de-
pendent on the ratio of the factorization scale µ to one
physical scale at a time. Namely, the region of phase
space where one of the soft gluons enters the region sen-
sitive to the scale µ1 and the other enters the region
sensitive to µ2 generates the double log ↵2

s ln2 µ2/(µ1µ2),

Hard scale

Left jet scale

Right jet scale

Soft scales

µH = Q

µL
S = m2

1/Q

µout
S = ⇤

µR
S = m2

2/Q

µL
J = m1

µR
J = m2

FIG. 1: The relevant scales in the exclusive jet mass cross
section with an energy veto, ⇤ outside of the jets is shown
for a particular choice of the hierarchy m2

2 ⌧ ⇤Q ⌧ m2
1 that

gives rise to large non-global logs. Our results apply to any
choice of m1,2 and ⇤ that satisfies Q � m1,2 � m2

1,2/Q, ⇤,
which maintains the separation between hard, jet and soft
scales.

while the regions where soft gluons enter only region 1 or
only region 2 generate ↵2

s ln2(µ/µ1) and ↵2
s ln2(µ/µ2). In

[21] we derived from RG invariance of the cross section
and IR safety of the soft function that the coe�cients
of these logs are constrained so that the µ-dependence
cancels, but an NGL ↵2

s ln2(µ1/µ2) is left over. Analo-
gously for �(m1, m2, ⇤), the three soft phase space re-
gions that give rise to the NGLs at O(↵2

s) are shown
in Fig. 2. Each configuration contributes logarithms of
µ over a single scale, the “in-out” regions contributing
logs ↵2

s ln2 µ2/(⇤ m1,2), and the “in-in” region contribut-
ing logs ↵2

s ln2 µ2/(m1m2). These combine with single-
region contributions to give NGLs of ⇤/m1,2 with coe�-
cients fOL,OR and of m1/m2 with coe�cient fLR. These
coe�cients give the geometric factor S2 in Eq. (2). IR
safety and RG invariance will allow us to derive addi-
tional strong relations among these di↵erent coe�cients.
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only region 2 generate ↵2
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Multijet Events from SCET
❖ factorization:
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❖ currently extending to pp collisions with T. Mehen 
(involves soft function with pT veto and rapidity cut)  

❖ much more types of NGLs….

Ellis, AH, Lee, Vermilion, Walsh 1001.0014
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Outline
❖ Jets from SCET (progress in multijet observables)!

❖ Jet Substructure from Event Generators (“Q-jets”)!

❖ SCET from Jet Substructure (“Q-thrust” and NGLs)!

❖ Event Generators from SCET (“GenEvA”)



What is a “Q-Jet”?

#2: cluster into trees!
(depends on algorithm)

kT (groups soft first)

C/A (groups by angle)

anti-kT (groups soft last)

❖ Q-Jets: use “all” clusterings ⇒ mass distribution for each jet

#1: find jet

❖ classical (deterministic) substructure analyses

Ellis, AH, Krohn, Roy, Schwartz 1201.1914

#3: get “groomed” mJ

“Pruning”!
Ellis, Walsh, Vermilion!

(0912.0033)

“Trimming”!
Krohn, Thaler, Wang!

(0912.1342)

“Mass Drop+Filter”!
Butterworth, Davison, 

Rubin, Salam!
(0802.2470)

http://arxiv.org/abs/1201.1914


Tree Weighting
❖ can’t sample all clusterings/“trees” (~10!-20!)!

❖ instead, sample around kT-like (or CA-like) randomly:

Ellis, AH, Krohn, Roy, Schwartz 1201.1914
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assigned to the trees is reduced and we find that we can
use process-independent weights.

The idea we have described – associating a weighted
set of trees to a jet – would not be feasible if one had to
consider every tree which could be formed from a given
set of final state four-momenta in a jet. Fortunately, good
approximations to such weighted distributions obtained
using every tree can be captured through a procedure
analogous to Monte-Carlo integration, allowing us to use
a very small fraction of the trees. This can be achieved
since infrared and collinear safe jet observables must be
insensitive to small reshu⇧ings of the momenta, implying
that large classes of trees give very similar information.

The algorithm we propose, which assembles a tree via
a series of 2 ⌅ 1 mergings, functions as follows:

1. At every stage of clustering, a set of weights ⇤ij for
all pairs �ij of the four-vectors is computed, and
a probability ⇥ij = ⇤ij/N , where N =

⌃
�ij⇥ ⇤ij is

assigned to each pair.

2. A random number is generated and used to choose
a pair �ij with probability ⇥ij . The chosen pair
is merged, and the procedure is repeated until all
particles all clustered.

This algorithm directly produces trees distributed ac-
cording to their weight

⌥
mergings ⇥ij . To produce a dis-

tribution of the observable for each jet, this algorithm is
simply repeated a number of times, yielding a di⇤erent
tree (essentially) every time. Note that any algorithm
which modifies a tree during its construction (e.g., jet
pruning) can be adapted to work with this procedure as
demonstrated below.

One particularly interesting class of weights ⇤(�)
ij ,

parametrized by a continuous real number � we term
rigidity is given by

⇤(�)
ij ⇥ exp

⇤
��

(dij � dmin)

dmin

⌅
. (1)

Here, dij is the jet distance measure for the �ij pair,
e.g.,

dij =

⇧
dkT ⇥ min{p2Ti, p

2
Tj}�R2

ij

dC/A ⇥ �R2
ij

, (2)

where �R2
ij = �y2ij + �⇥2

ij , and dmin is the minimum
over all pairs at this stage in the clustering. Note that
with this metric, our algorithm reduces to a traditional
clustering algorithm of the type defined by the distance
dij when � ⌅ ⇧, i.e., in that limit the minimal dij is
always chosen. In this sense, it is helpful to think of
the traditional, single tree algorithm as the “classical”
approach, and � ⇤ 1/~ controlling the deviation from
the “classical” clustering behavior. With this analogy,
we call the trees constructed in this non-deterministic

FIG. 1. Distribution of pruned jet mass for a single boosted
QCD-jet in a single event with pT � 500 GeV. The black
and red solid lines show the classical pruned masses when
C/A and kT algorithms are used to cluster the jet. The black
and dashed (red and dot-dashed) line shows the pruned jet
mass distribution of 1000 Q-jets (constructed from the same
jet in the same event), when the C/A (kT) measure is used
in Eq. (1). These distributions result from clusterings with
rigidity � = 1.0 (top) and � = 0.01 (bottom).

fashion Q-jets (“quantum” jet) and the number of trees
used NQ-jet.
We now demonstrate, as an illustrative example, how

the use of Q-jets can have important e⇤ects in an analy-
sis employing jet pruning to study hadronically decaying
boostedW s. As described in Ref. [6] pruning is one of the
jet grooming tools [7] used to sharpen signal and reduce
background when considering boosted heavy objects. It
functions by modifying the mergings in a given tree that
involve both a large angular separation and asymmetric
energy sharing by removing the lower energy daughter
from the tree. In detail, if a clustering algorithm at-
tempts to cluster two four-momenta i and j which satisfy

zij ⇥
min

�
pTi , pTj

⇥

| ◆pTi + ◆pTj |
< zcut and

�Rij > Dcut ,

(3)

then the merging is vetoed and the softer of the two four-
momenta is discarded. By applying jet pruning to a set
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❖ this gives distribution for each jet (stable after ~10-100 trees)
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Vol. Rigidity
cut (Vcut) � = 0 � = 0.01 � = 0.1 � = 1 � = 100

�S⇥/�B|Q
�S⇥/�B|cl

0.02 1.28(5) 1.24(3) 1.28(3) 1.36(3) 1.13(1)
0.03 1.51(2) 1.45(3) 1.37(4) 1.35(2) 1.10(1)
0.04 1.51(4) 1.45(4) 1.39(3) 1.29(3) 1.10(1)
0.05 1.43(4) 1.44(3) 1.39(3) 1.27(1) 1.08(1)
None 1.07(1) 1.13(1) 1.18(1) 1.14(1) 1.06(1)

��m⇥|cl
��m⇥|Q

0.02 0.48(7) 0.49(7) 0.50(7) 0.77(2) 0.95(1)
0.03 0.56(4) 0.57(5) 0.60(4) 0.87(1) 0.98(1)
0.04 0.62(3) 0.69(3) 0.71(2) 0.93(1) 1.00(1)
0.05 0.80(1) 0.80(1) 0.81(1) 0.96(1) 1.01(1)
None 1.32(2) 1.31(2) 1.25(2) 1.10(2) 1.03(1)

�S⇥/�B⇥|Q
�S⇥/�B⇥|cl

0.02 14(2) 13(1) 11(1) 3.1(1) 1.44(2)
0.03 8.6(5) 7.7(4) 5.6(3) 2.4(1) 1.30(2)
0.04 5.3(2) 4.9(2) 3.9(1) 2.00(4) 1.19(2)
0.05 3.6(1) 3.5(1) 3.1(1) 1.75(4) 1.14(2)
None 0.67(1) 0.74(1) 0.89(1) 1.01(2) 1.00(1)

TABLE I. The improvement found in various measurements
performed using the Q-jet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(�) and subject to a set of volatility cuts (V � Vcut). The
first set of rows exhibit the discovery potential ⇤S⌅/⇥B, while
the second shows the average jet mass fluctuation ⇥⇤m⌅. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

and similar numbers would arise for any value above
NQ-jet � 50. The indicated ratios to the classical results
should be independent of ⌃NJ⌥ and we have determined
the values and their uncertainties by fitting to results
for ⌃NJ⌥ = 5, 10, 15, 20. These approximate statistical
uncertainties are shown in parenthesis and apply to the
last digit. We perform 104 repetitions of the pseudo-
experiment and expect at most O(1%) statistical e⇥ects
from this procedure.

The first set of rows in Table I display measurements
of the discovery potential ⌃S⌥/⇥B compared to the re-
sults with classical pruning. Since this quantity scales as 
L, the square of the number in the Table can be in-

terpreted as an e⇥ective luminosity improvement due to
employing the Q-jet procedure. For example, for � = 0.1
(with no volatility cut) the number 1.18 means an e⇥ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger � values confine the range of trees and yield
results very near the classical pruning results. Smaller
� values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation ⇥⌃m⌥|cl/⇥⌃m⌥|Q (note classical over Q-jets
here). Values greater than unity mean that the mass
can be measured more precisely with the Q-jet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as � decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Q-jets compared to classical pruning. For this quantity
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the second shows the average jet mass fluctuation ⇥⇥m⇤. The
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for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

repetitions of the pseudo-experiment and expect at most
O(1%) statistical e⇥ects from this procedure.

The first set of rows in Table I display measurements
of the discovery potential ⌅S⇧/⇥B compared to the re-
sults with classical pruning. Since this quantity scales as⌃
L, the square of the number in the Table can be in-

terpreted as an e⇥ective luminosity improvement due to
employing the Qjet procedure. For example, for � = 0.1
(with no volatility cut) the number 1.18 means an e⇥ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger � values confine the range of trees and yield
results very near the classical pruning results. Smaller
� values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation ⇥⌅m⇧|cl/⇥⌅m⇧|Q (note classical over Qjets
here). Values greater than unity mean that the mass
can be measured more precisely with the Qjet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as � decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Qjets compared to classical pruning. For this quantity
(and again no volatility cut) the best case occurs for large
� with all trees being essentially the classical tree. Note
that the fact that we get sensible results for � = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
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FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the NQjet di⇥erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/⌅m⇧ , (4)

where � ⇥
�
⌅m2⇧ � ⌅m⇧2 and ⌅m⇧ are the RMS devia-

tion and the mean of the pruned jet mass distribution for
a single jet.
The distribution of volatility for signal and background

Qjets with � = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V ⇤ Vcut, leads to the signal and background
e⇤ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
defined as in the Table, i.e., e⇤ciency refers to the frac-
tion of the Qjets that yield a pruned mass in the mass
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Vol. Rigidity
cut (Vcut) � = 0 � = 0.01 � = 0.1 � = 1 � = 100

�S⇥/�B|Q
�S⇥/�B|cl

0.02 1.28(5) 1.24(3) 1.28(3) 1.36(3) 1.13(1)
0.03 1.51(2) 1.45(3) 1.37(4) 1.35(2) 1.10(1)
0.04 1.51(4) 1.45(4) 1.39(3) 1.29(3) 1.10(1)
0.05 1.43(4) 1.44(3) 1.39(3) 1.27(1) 1.08(1)
None 1.07(1) 1.13(1) 1.18(1) 1.14(1) 1.06(1)
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0.02 0.48(7) 0.49(7) 0.50(7) 0.77(2) 0.95(1)
0.03 0.56(4) 0.57(5) 0.60(4) 0.87(1) 0.98(1)
0.04 0.62(3) 0.69(3) 0.71(2) 0.93(1) 1.00(1)
0.05 0.80(1) 0.80(1) 0.81(1) 0.96(1) 1.01(1)
None 1.32(2) 1.31(2) 1.25(2) 1.10(2) 1.03(1)

�S⇥/�B⇥|Q
�S⇥/�B⇥|cl

0.02 14(2) 13(1) 11(1) 3.1(1) 1.44(2)
0.03 8.6(5) 7.7(4) 5.6(3) 2.4(1) 1.30(2)
0.04 5.3(2) 4.9(2) 3.9(1) 2.00(4) 1.19(2)
0.05 3.6(1) 3.5(1) 3.1(1) 1.75(4) 1.14(2)
None 0.67(1) 0.74(1) 0.89(1) 1.01(2) 1.00(1)

TABLE I. The improvement found in various measurements
performed using the Qjet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(�) and subject to a set of volatility cuts (V � Vcut). The
first set of rows exhibit the discovery potential ⇥S⇤/⇥B, while
the second shows the average jet mass fluctuation ⇥⇥m⇤. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

repetitions of the pseudo-experiment and expect at most
O(1%) statistical e⇥ects from this procedure.

The first set of rows in Table I display measurements
of the discovery potential ⌅S⇧/⇥B compared to the re-
sults with classical pruning. Since this quantity scales as⌃
L, the square of the number in the Table can be in-

terpreted as an e⇥ective luminosity improvement due to
employing the Qjet procedure. For example, for � = 0.1
(with no volatility cut) the number 1.18 means an e⇥ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger � values confine the range of trees and yield
results very near the classical pruning results. Smaller
� values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation ⇥⌅m⇧|cl/⇥⌅m⇧|Q (note classical over Qjets
here). Values greater than unity mean that the mass
can be measured more precisely with the Qjet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as � decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Qjets compared to classical pruning. For this quantity
(and again no volatility cut) the best case occurs for large
� with all trees being essentially the classical tree. Note
that the fact that we get sensible results for � = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
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FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the NQjet di⇥erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/⌅m⇧ , (4)

where � ⇥
�

⌅m2⇧ � ⌅m⇧2 and ⌅m⇧ are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.
The distribution of volatility for signal and background

Qjets with � = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V ⇤ Vcut, leads to the signal and background
e⇤ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
defined as in the Table, i.e., e⇤ciency refers to the frac-
tion of the Qjets that yield a pruned mass in the mass

FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e⇤ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

(and again no volatility cut) the best case occurs for large
� with all trees being essentially the classical tree. Note
that the fact that we get sensible results for � = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
While the discussion above certainly suggests that us-

ing Q-jets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from theNQ-jet di⇥erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/⌃m⌥ , (4)

where � ⇥
�
⌃m2⌥ � ⌃m⌥2 and ⌃m⌥ are the RMS devia-

tion and the mean of the pruned jet mass distribution for
a single jet.
The distribution of volatility for signal and background

Q-jets with � = 0.01 is shown in the upper panel of
Fig. 2. On simple physical grounds one expects that sig-
nal jets, i.e., jets that contain an intrinsic mass scale,
will exhibit a lower volatility than QCD jets with no in-
trinsic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
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Vol. Rigidity
cut (Vcut) � = 0 � = 0.01 � = 0.1 � = 1 � = 100

�S⇥/�B|Q
�S⇥/�B|cl

0.02 1.28(5) 1.24(3) 1.28(3) 1.36(3) 1.13(1)
0.03 1.51(2) 1.45(3) 1.37(4) 1.35(2) 1.10(1)
0.04 1.51(4) 1.45(4) 1.39(3) 1.29(3) 1.10(1)
0.05 1.43(4) 1.44(3) 1.39(3) 1.27(1) 1.08(1)
None 1.07(1) 1.13(1) 1.18(1) 1.14(1) 1.06(1)
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0.02 0.48(7) 0.49(7) 0.50(7) 0.77(2) 0.95(1)
0.03 0.56(4) 0.57(5) 0.60(4) 0.87(1) 0.98(1)
0.04 0.62(3) 0.69(3) 0.71(2) 0.93(1) 1.00(1)
0.05 0.80(1) 0.80(1) 0.81(1) 0.96(1) 1.01(1)
None 1.32(2) 1.31(2) 1.25(2) 1.10(2) 1.03(1)
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0.02 14(2) 13(1) 11(1) 3.1(1) 1.44(2)
0.03 8.6(5) 7.7(4) 5.6(3) 2.4(1) 1.30(2)
0.04 5.3(2) 4.9(2) 3.9(1) 2.00(4) 1.19(2)
0.05 3.6(1) 3.5(1) 3.1(1) 1.75(4) 1.14(2)
None 0.67(1) 0.74(1) 0.89(1) 1.01(2) 1.00(1)

TABLE I. The improvement found in various measurements
performed using the Q-jet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(�) and subject to a set of volatility cuts (V � Vcut). The
first set of rows exhibit the discovery potential ⇤S⌅/⇥B, while
the second shows the average jet mass fluctuation ⇥⇤m⌅. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

and similar numbers would arise for any value above
NQ-jet � 50. The indicated ratios to the classical results
should be independent of ⌃NJ⌥ and we have determined
the values and their uncertainties by fitting to results
for ⌃NJ⌥ = 5, 10, 15, 20. These approximate statistical
uncertainties are shown in parenthesis and apply to the
last digit. We perform 104 repetitions of the pseudo-
experiment and expect at most O(1%) statistical e⇥ects
from this procedure.

The first set of rows in Table I display measurements
of the discovery potential ⌃S⌥/⇥B compared to the re-
sults with classical pruning. Since this quantity scales as 
L, the square of the number in the Table can be in-

terpreted as an e⇥ective luminosity improvement due to
employing the Q-jet procedure. For example, for � = 0.1
(with no volatility cut) the number 1.18 means an e⇥ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger � values confine the range of trees and yield
results very near the classical pruning results. Smaller
� values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation ⇥⌃m⌥|cl/⇥⌃m⌥|Q (note classical over Q-jets
here). Values greater than unity mean that the mass
can be measured more precisely with the Q-jet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as � decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Q-jets compared to classical pruning. For this quantity
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0.03 8.6(5) 7.7(4) 5.6(3) 2.4(1) 1.30(2)
0.04 5.3(2) 4.9(2) 3.9(1) 2.00(4) 1.19(2)
0.05 3.6(1) 3.5(1) 3.1(1) 1.75(4) 1.14(2)
None 0.67(1) 0.74(1) 0.89(1) 1.01(2) 1.00(1)

TABLE I. The improvement found in various measurements
performed using the Qjet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(�) and subject to a set of volatility cuts (V � Vcut). The
first set of rows exhibit the discovery potential ⇥S⇤/⇥B, while
the second shows the average jet mass fluctuation ⇥⇥m⇤. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

repetitions of the pseudo-experiment and expect at most
O(1%) statistical e⇥ects from this procedure.

The first set of rows in Table I display measurements
of the discovery potential ⌅S⇧/⇥B compared to the re-
sults with classical pruning. Since this quantity scales as⌃
L, the square of the number in the Table can be in-

terpreted as an e⇥ective luminosity improvement due to
employing the Qjet procedure. For example, for � = 0.1
(with no volatility cut) the number 1.18 means an e⇥ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger � values confine the range of trees and yield
results very near the classical pruning results. Smaller
� values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation ⇥⌅m⇧|cl/⇥⌅m⇧|Q (note classical over Qjets
here). Values greater than unity mean that the mass
can be measured more precisely with the Qjet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as � decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Qjets compared to classical pruning. For this quantity
(and again no volatility cut) the best case occurs for large
� with all trees being essentially the classical tree. Note
that the fact that we get sensible results for � = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
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FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the NQjet di⇥erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/⌅m⇧ , (4)

where � ⇥
�

⌅m2⇧ � ⌅m⇧2 and ⌅m⇧ are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.
The distribution of volatility for signal and background

Qjets with � = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V ⇤ Vcut, leads to the signal and background
e⇤ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
defined as in the Table, i.e., e⇤ciency refers to the frac-
tion of the Qjets that yield a pruned mass in the mass
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0.05 3.6(1) 3.5(1) 3.1(1) 1.75(4) 1.14(2)
None 0.67(1) 0.74(1) 0.89(1) 1.01(2) 1.00(1)

TABLE I. The improvement found in various measurements
performed using the Qjet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(�) and subject to a set of volatility cuts (V � Vcut). The
first set of rows exhibit the discovery potential ⇥S⇤/⇥B, while
the second shows the average jet mass fluctuation ⇥⇥m⇤. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

repetitions of the pseudo-experiment and expect at most
O(1%) statistical e⇥ects from this procedure.

The first set of rows in Table I display measurements
of the discovery potential ⌅S⇧/⇥B compared to the re-
sults with classical pruning. Since this quantity scales as⌃
L, the square of the number in the Table can be in-

terpreted as an e⇥ective luminosity improvement due to
employing the Qjet procedure. For example, for � = 0.1
(with no volatility cut) the number 1.18 means an e⇥ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger � values confine the range of trees and yield
results very near the classical pruning results. Smaller
� values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation ⇥⌅m⇧|cl/⇥⌅m⇧|Q (note classical over Qjets
here). Values greater than unity mean that the mass
can be measured more precisely with the Qjet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as � decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Qjets compared to classical pruning. For this quantity
(and again no volatility cut) the best case occurs for large
� with all trees being essentially the classical tree. Note
that the fact that we get sensible results for � = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
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FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the NQjet di⇥erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/⌅m⇧ , (4)

where � ⇥
�

⌅m2⇧ � ⌅m⇧2 and ⌅m⇧ are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.
The distribution of volatility for signal and background

Qjets with � = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V ⇤ Vcut, leads to the signal and background
e⇤ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
defined as in the Table, i.e., e⇤ciency refers to the frac-
tion of the Qjets that yield a pruned mass in the mass

FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e⇤ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

(and again no volatility cut) the best case occurs for large
� with all trees being essentially the classical tree. Note
that the fact that we get sensible results for � = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
While the discussion above certainly suggests that us-

ing Q-jets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from theNQ-jet di⇥erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/⌃m⌥ , (4)

where � ⇥
�
⌃m2⌥ � ⌃m⌥2 and ⌃m⌥ are the RMS devia-

tion and the mean of the pruned jet mass distribution for
a single jet.
The distribution of volatility for signal and background

Q-jets with � = 0.01 is shown in the upper panel of
Fig. 2. On simple physical grounds one expects that sig-
nal jets, i.e., jets that contain an intrinsic mass scale,
will exhibit a lower volatility than QCD jets with no in-
trinsic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
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Vol. Rigidity
cut (Vcut) � = 0 � = 0.01 � = 0.1 � = 1 � = 100

�S⇥/�B|Q
�S⇥/�B|cl

0.02 1.28(5) 1.24(3) 1.28(3) 1.36(3) 1.13(1)
0.03 1.51(2) 1.45(3) 1.37(4) 1.35(2) 1.10(1)
0.04 1.51(4) 1.45(4) 1.39(3) 1.29(3) 1.10(1)
0.05 1.43(4) 1.44(3) 1.39(3) 1.27(1) 1.08(1)
None 1.07(1) 1.13(1) 1.18(1) 1.14(1) 1.06(1)

��m⇥|cl
��m⇥|Q

0.02 0.48(7) 0.49(7) 0.50(7) 0.77(2) 0.95(1)
0.03 0.56(4) 0.57(5) 0.60(4) 0.87(1) 0.98(1)
0.04 0.62(3) 0.69(3) 0.71(2) 0.93(1) 1.00(1)
0.05 0.80(1) 0.80(1) 0.81(1) 0.96(1) 1.01(1)
None 1.32(2) 1.31(2) 1.25(2) 1.10(2) 1.03(1)

�S⇥/�B⇥|Q
�S⇥/�B⇥|cl

0.02 14(2) 13(1) 11(1) 3.1(1) 1.44(2)
0.03 8.6(5) 7.7(4) 5.6(3) 2.4(1) 1.30(2)
0.04 5.3(2) 4.9(2) 3.9(1) 2.00(4) 1.19(2)
0.05 3.6(1) 3.5(1) 3.1(1) 1.75(4) 1.14(2)
None 0.67(1) 0.74(1) 0.89(1) 1.01(2) 1.00(1)

TABLE I. The improvement found in various measurements
performed using the Q-jet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(�) and subject to a set of volatility cuts (V � Vcut). The
first set of rows exhibit the discovery potential ⇤S⌅/⇥B, while
the second shows the average jet mass fluctuation ⇥⇤m⌅. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

and similar numbers would arise for any value above
NQ-jet � 50. The indicated ratios to the classical results
should be independent of ⌃NJ⌥ and we have determined
the values and their uncertainties by fitting to results
for ⌃NJ⌥ = 5, 10, 15, 20. These approximate statistical
uncertainties are shown in parenthesis and apply to the
last digit. We perform 104 repetitions of the pseudo-
experiment and expect at most O(1%) statistical e⇥ects
from this procedure.

The first set of rows in Table I display measurements
of the discovery potential ⌃S⌥/⇥B compared to the re-
sults with classical pruning. Since this quantity scales as 
L, the square of the number in the Table can be in-

terpreted as an e⇥ective luminosity improvement due to
employing the Q-jet procedure. For example, for � = 0.1
(with no volatility cut) the number 1.18 means an e⇥ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger � values confine the range of trees and yield
results very near the classical pruning results. Smaller
� values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation ⇥⌃m⌥|cl/⇥⌃m⌥|Q (note classical over Q-jets
here). Values greater than unity mean that the mass
can be measured more precisely with the Q-jet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as � decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Q-jets compared to classical pruning. For this quantity
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TABLE I. The improvement found in various measurements
performed using the Qjet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(�) and subject to a set of volatility cuts (V � Vcut). The
first set of rows exhibit the discovery potential ⇥S⇤/⇥B, while
the second shows the average jet mass fluctuation ⇥⇥m⇤. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

repetitions of the pseudo-experiment and expect at most
O(1%) statistical e⇥ects from this procedure.

The first set of rows in Table I display measurements
of the discovery potential ⌅S⇧/⇥B compared to the re-
sults with classical pruning. Since this quantity scales as⌃
L, the square of the number in the Table can be in-

terpreted as an e⇥ective luminosity improvement due to
employing the Qjet procedure. For example, for � = 0.1
(with no volatility cut) the number 1.18 means an e⇥ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger � values confine the range of trees and yield
results very near the classical pruning results. Smaller
� values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation ⇥⌅m⇧|cl/⇥⌅m⇧|Q (note classical over Qjets
here). Values greater than unity mean that the mass
can be measured more precisely with the Qjet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as � decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Qjets compared to classical pruning. For this quantity
(and again no volatility cut) the best case occurs for large
� with all trees being essentially the classical tree. Note
that the fact that we get sensible results for � = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
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FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the NQjet di⇥erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/⌅m⇧ , (4)

where � ⇥
�

⌅m2⇧ � ⌅m⇧2 and ⌅m⇧ are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.
The distribution of volatility for signal and background

Qjets with � = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V ⇤ Vcut, leads to the signal and background
e⇤ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
defined as in the Table, i.e., e⇤ciency refers to the frac-
tion of the Qjets that yield a pruned mass in the mass
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FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the NQjet di⇥erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/⌅m⇧ , (4)

where � ⇥
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⌅m2⇧ � ⌅m⇧2 and ⌅m⇧ are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.
The distribution of volatility for signal and background

Qjets with � = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V ⇤ Vcut, leads to the signal and background
e⇤ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
defined as in the Table, i.e., e⇤ciency refers to the frac-
tion of the Qjets that yield a pruned mass in the mass

FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e⇤ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

(and again no volatility cut) the best case occurs for large
� with all trees being essentially the classical tree. Note
that the fact that we get sensible results for � = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
While the discussion above certainly suggests that us-

ing Q-jets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from theNQ-jet di⇥erent prunings more directly. We
introduce the volatility of a jet, defined as
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Fig. 2. On simple physical grounds one expects that sig-
nal jets, i.e., jets that contain an intrinsic mass scale,
will exhibit a lower volatility than QCD jets with no in-
trinsic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on

❖ different for different algorithms :!
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❖ Variation larger for QCD jets (no real mJ scale)!

! ⇒ “Volatility”:

Q-Dists

Ellis, AH, Krohn, Roy, Schwartz 1201.1914
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Experimental Success of VolatilityComparing to N-subjettiness Comparative Performance
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• Now, compare the full ROC
curve for both variables

• See generally similar
performance

• At high e�ciency, volatility is
a little stronger

• At low e�ciency,
N-subjettiness is a little
stronger

• Next step: a combination,
exploiting the strengths of each
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❖ compare to standard candle (N-subjettiness):
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• How does volatility compare with existing W -tagging techniques, i.e.
N-subjettiness?

• See some correlation, but especially in dijets, not very strong
• Suggests a powerful potential combination of the variables

• More information on N-subjettiness in backup
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❖ BOOST2013 working groups: understand correlations

ATLAS-CONF-2013-087

better!} not very !
correlated!!!

Thaler, Tilburg 1011.2268
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Statistical Improvement
Ellis, AH, Roy 1409.6785

❖ standard measurements have Poisson production and binomial tagging!

❖ instead, weighted tagging based off Q-jet overlap!

!

!

!

❖ in general, we find!

!

❖ found ~25% improvement on both S/δB and δm/m measurements!

Figure 3: Sketch of the pruned jet mass distribution for a jet processed many times with Qjets.
The red area represents the mass window (⌦), the fraction of the jetmass distribution within the mass
window (blue) is the tagging e�ciency of the jet ⌧Q

j

, and µ

Q

j

is the mean jetmass-in-the-window. µ

a

is the average jet mass for the entire distribution.

Similarly we define µ

Q

j

as the mean value of the pruned jet mass for these W -like interpretations for
the same jet. Thus we have
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. (3.7)

For comparison, µ
a

in Figure 3 indicates the average jet mass for the full distribution, not just in the
signal window. For a background (QCD) jet, this full-average mass value is generally quite di↵erent
from µ

Q

j

.
Let us quickly review the Qjets procedure up to this point. We begin with a choice of the jet

finding algorithm and kinematic cuts, e.g., the anti-k
T

jet algorithm with R = 1.0 and kinematic cuts
on the jet, p

T

> 200 GeV and rapidity |y|  1.0. Then we subject the jets identified in this fashion to
the Qjets procedure with specific choices of the Qjets parameters ↵ and N

iter

to produce the single-jet
pruned mass distribution in Figure 3. With a specific signal jet in mind, say boosted W-jets, we define
the mass window ⌦ in Figure 3. This procedure results in values for ⌧Q

j

and µ

Q

j

from Eqs. (3.6) and
(3.7), which provide a measure of the likelihood that the given jet is a signal jet along with an estimate
of the “true” mass of that signal jet.

4 Results from phenomenological studies

As an introduction to the following discussion of the results of our phenomenological studies, recall
that the goal of the current work is to provide a more detailed explanation of the claim made in
Ref. [44] that the Qjets procedure improves the statistical stability of jet observables. The fundamental
point is that, unlike a conventional binary tagging algorithm that identifies a jet as either tagged
or not, the Qjets procedure yields a continuously valued tagging probability for a jet (as detailed in
Section 3). If observables are constructed using these tagging probabilities, it is non-trivial to estimate
the statistical uncertainties associated with these observables as the tagging probabilities exhibits a
continuous distribution on the interval [0, 1]. For example, the well known result that the statistical
uncertainty associated with the measurement of the number of tagged jets is given by �N

T

=
p
N

T

,
is no longer true. In Section 2, we gave analytic expressions for these uncertainties. In this section,
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(i.e., the mass of the heavy object) will exhibit a jet mass that is more robust under changes in the
details of the jet algorithm and grooming procedure compared to a background QCD jet. Volatility
as a discriminating variable has recently been validated [45, 46] by both the ATLAS and the CMS
collaborations of the LHC. The Qjets improvement in the statistical behavior of jet measurements
is less intuitive and the current work has the goal of explaining the how and why of this statistical
improvement.

In order to explain why the Qjets procedure is associated with non-standard statistical analyses,
let us first distinguish it from a conventional, or “classical” approach, in which a jet is first groomed
and then tagged to be a signal jet if its groomed mass falls within a pre-defined signal-mass window.
Such a conventional approach therefore assigns both a groomed mass µC

j

and a tagging e�ciency ⌧

C

j

to each jet j. The conventional tagging e�ciency is a binary tagging variable, which takes the value
1, if the mass of the jet is within the mass-window (⌦), µC

j

2 ⌦, and takes the value 0 if the mass of
the jet is not in the window, µC

j

/2 ⌦. For Qjets there is a well defined procedure (reviewed in more
detail in Section 3) to groom an individual jet in a variety of ways leading a distribution of groomed
masses. The corresponding Qjets tagging e�ciency ⌧

Q

j

is the fraction of those masses that fall within

the mass-window, while the Qjets measure of the jet mass µ

Q

j

is the average of the masses that fall
within the mass-window. The fundamental di↵erence in the statistical analysis of the Qjets case arises
from the fact that ⌧

Q

j

exhibits a continuous range of values in the interval [0, 1], in contrast to the
binary values of ⌧C

j

.

To illustrate the unconventional features of a continuous weight ⌧Q
j

more specifically, consider the
goal of identifying boosted W -jets. A binary ⌧

C

j

implies a jet is either W -like or QCD-like, whereas a

continuous ⌧Q
j

allows a jet to be treated as partially W -like and partially QCD-like. Now consider an
example where in an experiment the conventional approach identifies two jets with masses µC

1

= 80 GeV
and µ

C

2

= 85 GeV with ⌧

C

1

= ⌧

C

2

= 1. One therefore reports that the experiment sees 2 tagged W -
jets and measures the masses of the tagged jets to be (80 + 85) /2 GeV = 82.5 GeV. Contrast that
result with the Qjets procedure that might assign these two jets the same masses as the conventional
approach (i.e., µQ

j

= µ

C

j

), but finds one jet to be more W -like than the other (say, ⌧Q
1

= 0.9 and

⌧

Q

2

= 0.2). So, using the Qjets procedure, the experiment instead finds (0.9 + 0.2) = 1.1 W -jets, and
measures the W -mass to be (0.9 ⇥ 80 + 0.2 ⇥ 85)/(0.9 + 0.2) GeV = 80.9 GeV. Furthermore, as we
explain below, both of these observables (the number of tagged jets and the measured mass from the
tagged jets) are statistically more robust in the case of the Qjets procedure than in the conventional
approach. In fact, one can make a definite statement:
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where N
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represents the number of tagged jets that arise from a physical process expected to yield
N total jets and ✏ represents the e�ciency of the conventional tagging procedure, ✏ = N
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/N . So, if a
process is expected to yield N = 100 jets reconstructed at ✏ = 50% e�ciency, one expects unweighted
measurements of the cross section to have a statistical uncertainty of 14% (= 1/

p
50). On the other

hand, if one employs the Qjets procedure with the average tagging e�ciency ✏ still at 50%, one can
achieve an uncertainty somewhere between 10% and 14%. Thus, with Qjets one can hope to obtain

more precise results using the same data.
More specifically, the claims in Ref. [44] regarding the uncertainties of various measurements can
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Outline
❖ Jets from SCET (progress in multijet observables)!

❖ Jet Substructure from Event Generators (“Q-jets”)!

❖ SCET from Jet Substructure (“Q-thrust” and NGLs)!

❖ Event Generators from SCET (“GenEvA”)



Q-Jet Volatility Calculation (?)
❖ non-trivial mass Q-dists require at least O(10) particles!

! ⇒ need O(α10) calculation….!

!

!

!

!

❖ also not well-suited for SCET (V → 0 not “jetty”)

⇨ ⇨
Jet Mass

Su
m

 O
ve

r T
re

es m1
m2



Why are Q-Jets different?
❖ 2 reasons:!

1. NOT deterministic!

2. NOT energy-flow variable (event/jet shape)!

!! (depends on clustering, not just particle 4-momenta)!

!

❖ Can we disentangle these two properties???



Q-Thrust
❖ cluster L, R with some probability: !

!

!

!

!

❖ disentangle Q-Jets/N-subjettiness (un)correlation???!

1. non-deterministic (like traditional Q-Jets)!

2. but now energy-flow/shape var 

Thrust Axis!
(classical)
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Refs.[5,19,20]studiedNGLsof⇤/Qincrosssections
vetoingradiationwithtotalenergygreaterthan⇤inan-
gularregionsoutsideoffoundjets.Thoughahardscale
Qappearsintheseratios,wefoundin[21]thattheNGLs
stillarisefromconsideringbothscalesintheratiotobe
softandlatertakingoneofthemtoQinaninclusive
limit.

In[21]wemadeprogressinunderstandingtheori-
ginofNGLsine↵ectivefieldtheory.Weconsideredthe
factorizeddijetinvariantmassdistribution�(m1,m2)in
e+e�collisionsproducingback-to-backjets,andcalcu-
latedtoO(↵2

s),asalsoin[22],thehemispheresoftfunc-
tionS(kL,kR).Thesecalculationsclarifiedtheoriginof
NGLsinanEFTframeworkasthedependenceofasoft
functiononratiosofmultiplesoftscales,andrevealed
newsubleading(single)NGLsandnon-logarithmicnon-
globalfunctions.

TheseNGLsareorganizedintoamultiplicativefactor
enteringthetotalcrosssection,withtheleadingNGLs
takingthegenericform

SNG(µ1/µ2)=1�↵2
s

(2⇡)2
CFCAS2ln2µ1

µ2
+···.(2)

Hereµ1,2arethescalesatwhichsoftradiationisprobed
indi↵erentsharply-dividedregions.Forthehemisphere
massdistributionµ1,2=m2

1,2/QandS2=⇡2/3.For
the⇢Rdistribution,µ1=Q⇢Rwhileµ2=Qdueto
totalinclusivityinonehemisphere.Thecoe�cientS2

isageometricmeasureoftheregionintowhichthetwo
softgluonscontributingtoaNGLcango.Thefactthat
itvarieswiththesizeofthisregionisduetotheNGL
arisingfromapurelysoftdivergenceofQCD.Techniques
toresumNGLsusingnumericalfitsinthelarge-NClimit
ofQCDwereintroducedby[4],butanalyticresummation
ofNGLsinreal-worldQCDremainsanopenproblem.

Inthisworkweseektoextendtheintuitiongainedin
[21]bystudyingamoreexclusivesetofcrosssections.
Westudynon-globalpropertiesofanexclusivejetcross
section�(m1,m2,⇤),wheretheinvariantmassesm1and
m2oftwojetsofsizeRproducedinane+e�collision
atcenter-of-massenergyQaremeasured,withaveto⇤
ontheenergyofadditionaljets.Weconsiderfindingthe
jetsusingvariousalgorithms—cone,anti-kT,Cambridge-
Aachen,andkT[23–28].WewillfindthatNGLsof
theratioofthejetvetoandthejetmasses⇤/m1,2

arepresent,inadditiontoNGLsoftheratioofmasses
m1/m2.Wecalculatethecoe�cientsonlyofleadingdou-
bleNGLs↵2

sln2(µ1/µ2)inthispaper.Therelevantscales
forthisobservableareshowninFig.1foraparticularhi-
erarchyofm1,2and⇤,howeverourresultsarevalidfor
anychoicesuchthatQ�m1,2�m2

1,2/Q,⇤.
In[21],wediscoveredthatatO(↵2

s)NGLsoftwosoft
scalesµ1,2canbeconstructedfromseparatepiecesde-
pendentontheratioofthefactorizationscaleµtoone
physicalscaleatatime.Namely,theregionofphase
spacewhereoneofthesoftgluonsenterstheregionsen-
sitivetothescaleµ1andtheotherenterstheregion
sensitivetoµ2generatesthedoublelog↵2

sln2µ2/(µ1µ2),

Hard scale

Left jet scale

Right jet scale

Soft scales

µH=Q

µL
S=m2

1/Q

µout
S=⇤

µR
S=m2

2/Q

µL
J=m1

µR
J=m2

FIG.1:Therelevantscalesintheexclusivejetmasscross
sectionwithanenergyveto,⇤outsideofthejetsisshown
foraparticularchoiceofthehierarchym2

2⌧⇤Q⌧m2
1that

givesrisetolargenon-globallogs.Ourresultsapplytoany
choiceofm1,2and⇤thatsatisfiesQ�m1,2�m2

1,2/Q,⇤,
whichmaintainstheseparationbetweenhard,jetandsoft
scales.

whiletheregionswheresoftgluonsenteronlyregion1or
onlyregion2generate↵2

sln2(µ/µ1)and↵2
sln2(µ/µ2).In

[21]wederivedfromRGinvarianceofthecrosssection
andIRsafetyofthesoftfunctionthatthecoe�cients
oftheselogsareconstrainedsothattheµ-dependence
cancels,butanNGL↵2

sln2(µ1/µ2)isleftover.Analo-
gouslyfor�(m1,m2,⇤),thethreesoftphasespacere-
gionsthatgiverisetotheNGLsatO(↵2

s)areshown
inFig.2.Eachconfigurationcontributeslogarithmsof
µoverasinglescale,the“in-out”regionscontributing
logs↵2

sln2µ2/(⇤m1,2),andthe“in-in”regioncontribut-
inglogs↵2

sln2µ2/(m1m2).Thesecombinewithsingle-
regioncontributionstogiveNGLsof⇤/m1,2withcoe�-
cientsfOL,ORandofm1/m2withcoe�cientfLR.These
coe�cientsgivethegeometricfactorS2inEq.(2).IR
safetyandRGinvariancewillallowustoderiveaddi-
tionalstrongrelationsamongthesedi↵erentcoe�cients.
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Q-Thrust
❖ Examples:

⇡

Thrust Axis!
(classical)
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Q-Thrust

❖ must use clustering!!

❖ IR safety requires (in collinear limit):

❖ before splitting: ❖ after splitting: 
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2

Refs. [5, 19, 20] studied NGLs of ⇤/Q in cross sections
vetoing radiation with total energy greater than ⇤ in an-
gular regions outside of found jets. Though a hard scale
Q appears in these ratios, we found in [21] that the NGLs
still arise from considering both scales in the ratio to be
soft and later taking one of them to Q in an inclusive
limit.

In [21] we made progress in understanding the ori-
gin of NGLs in e↵ective field theory. We considered the
factorized dijet invariant mass distribution �(m1, m2) in
e+e� collisions producing back-to-back jets, and calcu-
lated to O(↵2

s), as also in [22], the hemisphere soft func-
tion S(kL, kR). These calculations clarified the origin of
NGLs in an EFT framework as the dependence of a soft
function on ratios of multiple soft scales, and revealed
new subleading (single) NGLs and non-logarithmic non-
global functions.

These NGLs are organized into a multiplicative factor
entering the total cross section, with the leading NGLs
taking the generic form

SNG(µ1/µ2) = 1 � ↵2
s

(2⇡)2
CF CAS2 ln2 µ1

µ2
+ · · · . (2)

Here µ1,2 are the scales at which soft radiation is probed
in di↵erent sharply-divided regions. For the hemisphere
mass distribution µ1,2 = m2

1,2/Q and S2 = ⇡2/3. For
the ⇢R distribution, µ1 = Q⇢R while µ2 = Q due to
total inclusivity in one hemisphere. The coe�cient S2

is a geometric measure of the region into which the two
soft gluons contributing to a NGL can go. The fact that
it varies with the size of this region is due to the NGL
arising from a purely soft divergence of QCD. Techniques
to resum NGLs using numerical fits in the large-NC limit
of QCD were introduced by [4], but analytic resummation
of NGLs in real-world QCD remains an open problem.

In this work we seek to extend the intuition gained in
[21] by studying a more exclusive set of cross sections.
We study non-global properties of an exclusive jet cross
section �(m1, m2, ⇤), where the invariant masses m1 and
m2 of two jets of size R produced in an e+e� collision
at center-of-mass energy Q are measured, with a veto ⇤
on the energy of additional jets. We consider finding the
jets using various algorithms—cone, anti-kT, Cambridge-
Aachen, and kT [23–28]. We will find that NGLs of
the ratio of the jet veto and the jet masses ⇤/m1,2

are present, in addition to NGLs of the ratio of masses
m1/m2. We calculate the coe�cients only of leading dou-
ble NGLs ↵2

s ln2(µ1/µ2) in this paper. The relevant scales
for this observable are shown in Fig. 1 for a particular hi-
erarchy of m1,2 and ⇤, however our results are valid for
any choice such that Q � m1,2 � m2

1,2/Q, ⇤.
In [21], we discovered that at O(↵2

s) NGLs of two soft
scales µ1,2 can be constructed from separate pieces de-
pendent on the ratio of the factorization scale µ to one
physical scale at a time. Namely, the region of phase
space where one of the soft gluons enters the region sen-
sitive to the scale µ1 and the other enters the region
sensitive to µ2 generates the double log ↵2
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section with an energy veto, ⇤ outside of the jets is shown
for a particular choice of the hierarchy m2
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gives rise to large non-global logs. Our results apply to any
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only region 2 generate ↵2

s ln2(µ/µ1) and ↵2
s ln2(µ/µ2). In

[21] we derived from RG invariance of the cross section
and IR safety of the soft function that the coe�cients
of these logs are constrained so that the µ-dependence
cancels, but an NGL ↵2

s ln2(µ1/µ2) is left over. Analo-
gously for �(m1, m2, ⇤), the three soft phase space re-
gions that give rise to the NGLs at O(↵2

s) are shown
in Fig. 2. Each configuration contributes logarithms of
µ over a single scale, the “in-out” regions contributing
logs ↵2

s ln2 µ2/(⇤ m1,2), and the “in-in” region contribut-
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cients fOL,OR and of m1/m2 with coe�cient fLR. These
coe�cients give the geometric factor S2 in Eq. (2). IR
safety and RG invariance will allow us to derive addi-
tional strong relations among these di↵erent coe�cients.
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❖ Cancellation of NGLs:



Outline
❖ Jets from SCET (progress in multijet observables)!

❖ Jet Substructure from Event Generators (“Q-jets”)!

❖ SCET from Jet Substructure (“Q-thrust” and NGLs)!

❖ Event Generators from SCET (“GenEvA”)



Overview of Event Generation 
!

• Loops


• Logs


!

• Legs 

} MC@NLO, 

POWHEG

} CKKW, MLM

- shower (LL) 

- QCD resummation 

- SCET

-Madgraph

-Alpgen 

-AMEGIC++

-calchep

}GenEvA (v0.1), MENLOPS = 

1 NLO + many LO + PS

GenEvA (v1.0) = 
many NLO + PS

MC@NLO: Frixione, Webber


POWHEG: Nason et al 

CKKW: Catani, Krauss, Kuhn, Webber


MLM: Mangano

GenEvA v0.1: Bauer, Tackmann, Thaler


MENLOPS: Hamilton, Nason; Hoche, Krauss, Schonherr, Siegert

Bauer, Berggren, Dunn, AH, 
Tackmann, Vermilion, Walsh, 

Zuberi 1211.7049

http://arxiv.org/abs/1211.7049


The Parton Shower (PS)
• LO for lowest multiplicity, higher mult. filled w/ parton splittings


!

!

!

!

• simple phase-space picture

start w/ 2-2 ME 

2 partons/jets

⇒

showering fills 
N-body phase 
space for all N 

dΦn+2dΦn+1dΦn

LO Matrix 
Element
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Parton 
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dΦn+3

Parton 
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The Parton Shower (PS)
•  beyond tree level, will need partons ≠ jets!!
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else} } }τn < τc
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} } }τn < τc
τn+1 < τc < τn

} } τc < τn+1
• need resolution parameter τn



How to Merge LO + PS (e.g., CKKW/MLM)

• multiple LO Matrix Elements
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NLO + PS  
(MC@NLO, POWHEG)
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• rows are IR-safe, finite quantities, but not columns!

• add virtual corrections?



NLO + PS  
(MC@NLO, POWHEG)

• need some “subtraction”:
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GenEvA (many NLO + PS)
• Can’t simply extend this idea to multiple NLO ⇒ use SCET:
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Bauer, Berggren, Dunn, AH, Tackmann, Vermilion, Walsh, Zuberi 1211.7049

http://arxiv.org/abs/1211.7049


Summary

Monte Carlo!
Event Generators

Jet substructure

Analytical Tools (SCET)

explore

Q-jets

precisely calculate !
& verify

multijets with jet shapes

new theory !
insight 

Q-thrust & NGLs

tune

systematically improve!
perturbative physics

GenEvA


